

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-1, January 2021
 https://doi.org/10.21276/ijircst.2021.9.1.1

Article ID D10962, Pages 1-10
 www.ijircst.org

Innovative Research Publication 1

Detection of XSS Attacks in Web Applications: A Machine

Learning Approach

Bronjon Gogoi,
1
 Tasiruddin Ahmed,

2
 and Hemanta Kumar Saikia

3

1,2,3 Scientist, Regional Centre of Excellence for Application Security,

National Informatics Centre, Guwahati, Assam, India

 Correspondence should be addressed to Bronjon Gogoi; bronjon.du@gmail.com

Copyright © 2021 Made Bronjon Gogoi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- With the increased use of the internet, web

applications and websites are becoming more and more

common. With the increased use, cyber-attacks on web

applications and websites are also increasing. Of all the

different types of cyber-attacks on web applications and

websites, XSS (Cross-Site Scripting) attacks are one of the

most common forms of attack. XSS attacks are a major
problem in web security and ranked as number two web

application security risks in the OWASP (Open Web

Application Security Project) Top 10. Traditional methods

of defence against XSS attacks include hardware and

software-based web application firewalls, most of which are

rule and signature-based. Rule-based and signature-based

web application firewalls can be bypassed by obfuscating

the attack payloads. As such, rule-based and signature-

based web application firewalls are not effective against

detecting XSS attacks for payloads designed to bypass web

application firewalls. This paper aims to use machine
learning to detect XSS attacks using various ML (machine

learning) algorithms and to compare the performance of the

algorithms in detecting XSS attacks in web applications and

websites.

KEYWORDS- Web Application, XSS Attacks, Machine

Learning

I. INTRODUCTION

In today’s digital world, a web application is the most cost-

effective mechanism of software delivery and used by

millions of businesses and other organizations to deliver

their services over the internet. Any user equipped with a

computer and an internet connection can access web

applications. This easy accessibility of web applications

also makes them vulnerable to a wide range of attacks from

malicious users. Among many categories of attack, the XSS
attack ranks as the number two web application security

risk. Figure. 1 shows the rank of XSS attacks in comparison

to other attacks. XSS vulnerabilities are easily exploitable

as many freely available tools are there to enable anyone

with minimum knowledge to attack web applications. XSS

attacks can lead to session hijacking, sensitive data

disclosure, cross-site request forgery (csrf) attacks, and

other security vulnerabilities including impersonation of the

victim. XSS attacks can also lead to code execution on the

server, depending on the application and privileges of the

user’s account [1]. At present, web applications adopt an

XSS prevention or XSS detection and prevention approach.

In XSS prevention approach, it is the responsibility of the

programmer or developer to adopt the necessary means to

prevent XSS attacks.

Fig. 1: XSS Attacks Compared to others

Developers use filtering, input and output encoding to

prevent XSS injection attacks [1]. Developers also use

automated tools to perform static, dynamic or hybrid

analysis to detect XSS vulnerabilities in web applications

and to take effective measures to defend against XSS

attacks. In XSS detection and prevention approach, WAFs
(Web Application Firewall) are used as a part of XSS

detection and prevention approach [2]. In WAF based

approach, WAFs are deployed outside the web application

servers. WAFs analyse all inbound traffic, detects attacks

using policy rules or expressions, and block detected

attacks. In static analysis, the source code of the application

is analysed using automated tools to discover vulnerabilities

in the source code. Dynamic analysis tests the application

by executing tests in real time. The hybrid analysis

combines both static and dynamic analysis to detect

injection attacks. The above-mentioned approaches of XSS

detection and prevention has drawbacks. In the first
approach of XSS detection using secure implementation,

the responsibility of defending against XSS attacks rests on

mailto:bronjon.du@gmail.com

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 2

the developers. There is no way of defending against

developer carelessness and hence can lead to XSS

vulnerabilities in the code, which can be later exploited.

Moreover, using static, dynamic and hybrid analysis also

has their drawbacks. The disadvantage of static analysis is

that results generated by static analysis tools have a high
False Positive Rate [2] and static analysis tools does not

support all programming languages. Dynamic analysis tools

have the disadvantage that they do not cover all execution

paths and produce high false positives and false negatives

[3]. The hybrid analysis combines both static and dynamic

analysis to detect injection attacks. Hybrid analysis has the

disadvantage that the analysis process is cumbersome and

time-consuming [4]. WAFs have the drawback that most

WAF’s are signature or rule based. Signature or rule based

WAF’s cannot detect zero day attacks and cannot detect

obfuscated XSS attacks [2]. There also lies the possibility
of improperly configured rules or signatures that can cause

the WAF to fail to detect XSS attacks. In this paper, we

propose a machine learning based WAF to detect the most

common XSS attacks in web applications. Our approach

includes the implementation of a Web Application Firewall

that uses machine learning to detect XSS attacks. The

remainder of this paper is organized as follows: In section

II, we discuss XSS attack types work; in section III, we

discuss related work; in section IV, we discuss our

proposed approach; in section V we draw our conclusion

and present the future scope of this study.

II. XSS ATTACKS

XSS scripting is a type of injection attack where malicious

scripts are inserted into the vulnerable web application by

attackers. The consequences of a successful XSS attack can

be session hijacking, sensitive data exposure, csrf, and

impersonation of victims and can even lead to code

execution on the server, depending on the application and

privileges of the user’s account [1].

There are three categories of XSS attacks [1].

A. Stored XSS

In Stored XSS attack, the attacker inputs malicious scripts

into a web application, which is then stored in, the target

server in form of a database record, or log in a webserver. A

benign user as a part of the website then retrieves the

malicious script. The malicious script can then access the

user’s session cookies, and perform actions on behalf of the

user. Figure 2 illustrates the dataflow of stored XSS attacks.

B. Reflected XSS

In Reflected XSS attack, the web application immediately

returns the data without making it safe for the browser.

Figure 3 illustrates the dataflow of reflected XSS attacks.

C. DOM Based XSS

In the DOM-based XSS attack, the attack payload never

leaves the browser and the data flow between source and

sink is entirely within the browser.Figure 4 illustrates the

dataflow of DOM-based XSS attacks.

III. LITERATURE REVIEW

JavaScript has become an unavoidable component when

developing interactive web applications. XSS attacks pose a
serious threat to web applications and as such, many works

has been done to detect XSS attacks. In [5], Di Lucca el al.

used a combination of static and dynamic analysis to detect

XSS attacks. Static analysis results in many false positives.

In order to eliminate false positives, dynamic analysis was

used to verify the vulnerabilities reported by static analysis.

Dynamic, static and hybrid analysis is not XSS detection
but a method of detecting vulnerabilities. Noxes is a tool

proposed by Kirda et al[6] which is a rule based system to

detect XSS attacks.

Fig. 2: Stored XSS attack dataflow

Fig. 3: Reflected XSS attack dataflow

Fig. 4: Dom-based XSS attack dataflow

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 3

Rule based systems has the drawback that new and zero day

attacks cannot be detected. xHunter was proposed by

,Athanasopoulos et al [7]. xHunter checks JavaScript parse

tree depth and if depth is greater than some threshold value,

it considers it as suspicious. In [8], Wurzinger et al.

developed a reverse proxy based solution SWAP(Secure
Web Application Proxy). Gupta et al. [9] proposed a

method called XSS-SAFE for XSS attack detection and

prevention based on automated feature injection statements

and placement of sanitizers in the injected code of

JavaScript. The main advantage of this method is that it can

detect XSS attacks without any modification to client- and

server-side commodities. Chun et al. proposed XSS attack

Detection Method based on SkipList[10]. In [11], Salas et

al. propose an approach, which uses security-testing

methods like penetration testing, and fault injection for

detection of XSS attack. Vishnu B A et al. [12] proposed a
method of detecting XSS attacks using machine learning

algorithms, extracting the characteristics of URLs and

JavaScript code and using three machine learning

algorithms (naive Bayes, SVM, and J48 decision trees) to

detect XSS. In their approach, they used a manual feature

extraction technique and the number of features used to

train the classifiers where very less. Komiya et al. [13] used

machine-learning techniques to classify user input to detect

malicious web code. Feature extraction depended on two

methods, blank separation, and tokenizing. The dataset used

was very small in their case. Likarish et al. [14] evaluated
Naive Bayes, ADTree, SVM, and RIPPER classifiers in

detecting obfuscation of scripts (as a proxy for malicious),

using features that track the number of times symbols

appears in benign and malicious scripts. Their approach

also used a manual feature extraction and the number of

XSS attack samples used to train was very low. Wang et al.

[15] where the main idea of feature extraction is that some

functions are of limited use in the benign scripts, but are

used much more in malicious scripts, such as the DOM-

modifying functions, the eval function, the escape function.

Their approach too had a very few samples and used

manual feature extraction. Nunan et al. [16] expanded the
approach of Likarish et al.,

where features were categorized into three groups: (1)

obfuscation based, (2) suspicious patterns and (3)

HTML/JavaScript schemes. They also used a manual

extracted feature set and number of features were very less

and only works on obfuscated JavaScript.

The machine learning approaches mentioned above focuses
on separating JavaScript samples, which are XSS attacks,

and JavaScript samples, which are not XSS attacks. In our

approach, we focus on separating JavaScript samples,

which are XSS attacks from normal web application inputs,

which are not XSS and can include text, numbers and other

categories of inputs, which can be a combination of text,

number, and punctuation.

IV. THE PROPOSED APPROACH

Figure 5 shows the architecture of the proposed approach of

detecting XSS attacks using ML algorithms. The proposed

system is implemented as Apache web server module. We
developed a custom Apache webserver module that

intercepts requests to the web application using hooks

provided by Apache webserver. The intercepted requests

are then analysed using the ML approach discussed in the

following section. If the requests are XSS injection attacks,

the request are dropped and the web application is protected

from XSS attacks. Figure 6 shows ML pipeline adopted in

our approach. The data collection, pre-processing, feature

extraction, and training and evaluation are the most

important steps in machine learning.

A. Data Collection

To train supervised machine learning algorithms we need

both positive and negative samples. In our case, we need

samples that are XSS attack payloads and also samples that

are normal or benign web application inputs. The positive

samples, which are XSS attack payloads, are collected using

XSS attack tools XSSTIKE and XSSER. We also collected
XSS attack payloads from various sites including GitHub

and exploit-db. Figure 7 shows the data collection process

for positive samples.

Fig. 5: Overall System

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 4

Fig. 6: Machine Learning Pipeline

Fig. 7: Positive XSS attack sample collection process

Fig. 8: Benign samples collection process

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 5

To generate negative benign samples, we use automated test

data generation tools. Different types of datasets are

generated using test data generation tools. Web application

inputs consist mainly of text and numerical data and

accordingly, we use the data generation tools to generate

data sets consisting mainly of text and numerical data.
Figure 8 shows the process of generating negative samples.

Our dataset consists of 15000 XSS attack samples and

15000 benign samples.

B. Pre-processing and Feature Extraction

Figure 9 shows our data preparation process. The raw data
collected is in the form of text data. The raw data is split

into a training set and a test set in a ratio of 70 to 30. The

training data is used to train the ML model and the test data

set is used to test the performance of the model. The

training and test data set are then transformed into a form

that is suitable as input to machine learning algorithms. A

whitespace tokenizer then breaks the text into terms

whenever it encounters whitespace. TFIDF (Term

Frequency Inverse Document Frequency) is used for feature

extraction from the tokenized text. TFIDF is a statistical

technique that is used to evaluate the importance of a word

in a document in a collection or corpus [14].
TFIDF measure is composed of two statistics, term

frequency, and inverse document frequency. The formula

for calculating TFIDF given a word t, a document d, and

document set D is as follows

 () () ()

Where:

 () (()
 () (⁄ ())

The output of TFIDF feature extraction is a sparse matrix,
which indicates the TFIDF score for all non-zero values in

the word vector for each document, which in our case is a

single positive attack sample or a negative attack sample.

The sparse matrix becomes the input to our machine

learning algorithms.

Fig. 9: Data preparation process

C. Training And Evaluation

Our task is to separate the positive attack samples from

negative attack samples, which is a binary classification

task. The most commonly used classification algorithms are

Logistic Regression, Naïve Bayes, Support Vector

Machines (SVM), Random Forest, Neural Networks,

Bagging and Boosting, Deep Learning. In our approach, we

used the SVM algorithm. SVM has the advantage of being

robust against overfitting problems, especially for text data

due to high dimensional space [15].

1) Algorithms

 In our approach, we have used the SVM algorithm for

classifying web application inputs as XSS attacks or benign

inputs. Vapnik and Chervonenkis [16] developed the linear

version of Support vector machines. Later B.E. Boser et al

[17] developed the nonlinear version of SVM. SVM can be

used for binary and multiclass classification but here we
only consider the binary class SVM since our task is a

binary classification task.

Linear Binary class SVM

Let D be a dataset

 {()| {

 .

SVM tries to find and such that the

prediction is given by () is correct for most

samples. SVM tries to find and by solving the

following optimization problem:

 ()

The above optimization problem is a convex quadratic
optimization problem.

Non Linear Binary class SVM

The linear binary class SVM can only work for linearly

separable data but most of the real-world datasets are not

linearly separable. To overcome this limitation of Linear

Binary class SVM, Non Linear Binary Class SVM was

developed. The problem of hard margin classifier is solved

by adding slack variables and regularization parameter C.

The regularized optimization problem then becomes

 ∑

 ()

2) Training

 Figure 10 shows our training approach. We trained two

classifiers. The first classifier was trained using linear SVM

while the second was trained using non-linear SVM. The

accuracy and performance of the classifiers depend on the

hyperparameters of the algorithm. Hyperparameters control

the learning process. Hyperparameters cannot be derived
via training but must be specified by the user of the ML

algorithm. The process of finding a set of optimal

hyperparameters for a given ML algorithm is known as

Hyperparameter Optimization. Grid search, Random search,

Bayesian Optimization, Gradient-based optimization are

some approaches to Hyperparameter optimization. In our

approach, we used Grid search for Hyperparameter

optimization.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 6

Fig.10: Training Process

Machine learning models often suffer from the problem of

overfitting. Overfitting occurs when the ML model too

closely models the details and noise in the data and fails to

generalize the relationship between dependent and

independent variables.

This failure to generalize leads to the poor ability of the

model to predict new data. Non-linear ML algorithms are

more susceptible to overfitting due to the flexibility in
learning the target function. To prevent overfitting in the

SVM algorithm, we used k-Fold cross-validation. k-Fold

cross-validation is a statistical resampling technique where

the ML model is trained and tested on k subsets of training

data. In our approach, we used a cross-validation approach

with a value of k as 10. The Learning curve for linear SVM

is shown in figure 11. and the learning curve for non-linear

SVM is shown in figure 12. The learning curve shows that

the MSE (Mean Squared Error) against the number of

training samples. From the curve, it is seen that the MSE of

non-linear SVM is lower than that of linear SVM. Figure
13. shows the training and validation score for linear SVM

and Figure 14 shows the training and validation score for

non-linear SVM. The train and validation curve for linear

SVM and non-linenar SVM shows that the model is able to

generalize well and is not overfitting. The score of the

models can be further improved with more samples.

Fig. 11: Learning curve linear SVM

Fig.12: Learning curve non-linear SVM

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 7

Fig. 13: Training and validation curve linear SVM

Fig. 14: Training and validation curve non-linear SVM

3) Evaluation

The accuracy of an ML model is measured based on TP

(True Positive), TN (True Negative), FP (False Positive),

and FN (False Negative). TP is the number of correctly

classified positive samples; TN negative is the number of
correctly classified negative samples; FP is the number of

samples that are incorrectly classified as positive and FN is

the number of samples that are incorrectly classified as

negative. Concerning our problem, TP is the number of

samples correctly classified as XSS attacks, and TN is the

number of samples correctly classified as benign inputs.

The following performance metrics were used to measure

the performance of our machine learning algorithms.

a) Precision

Precision is the ratio of correctly predicted positive

observations to the total predicted observations. The

formula for calculating Precision is

b) Recall

The recall is the ratio of correctly predicted positive

observations to all observations in an actual class. The

formula for calculating Recall is

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 8

c) F1 Score

F1 score - F1 score is the weighted average of Precision and

Recall. Therefore, this score takes both false positives and

false negatives into account. The formula for calculating F1
score is

We evaluated both the linear SVM model and non-linear

SVM model against the test data that was set aside for

evaluation during the data preparation and pre-processing

phase.

Figure 15. show the confusion matrix for linear SVM and

Figure 16. show the confusion matrix for non-linear SVM.

Fig. 15: Confusion matrix linear SVM

Fig. 16: Confusion matrix non-linear SVM

Figure 13 and 14 shows the graph of training loss and

validation loss of linear and non-linear SVM respectively.

The validation loss is lesser than the training loss indicating

that the model is not overfitting. The precision, recall and

F1 score for both linear and non-linear SVM are shown in

Table.

Table 1: F1 score for both linear and non-linear SVM

Metric Value

Precision 0.97

Recall 0.99

F1 Score 0.97

Table 2: F1 score for both linear and non-linear SVM

Metric Value

Precision 0.98

Recall 0.99

F1 Score 0.98

The precision, recall and f1-score of both linear and non-

linear SVM indicates that the algorithms are able to

successfully separate the XSS attack inputs from benign

web application inputs. The precision of both linear SVM

and non-linear SVM shows that false positive rate is less.
The recall show that false negative rate is less. The f1-score

shows that there is a balance between precision and

accuracy, which is desirable in our case as it, shows that

both false positive rate and false negative rates are low.

Figure 17 and 18. shows the scalability of linear SVM and

non-linear SVM respectively. It plots the model fitting

times in seconds against the number of training samples.

Though the non-linear SVM performs better in terms of

accuracy and f1-score, it takes much longer time than the

linear SVM for model fitting.

Fig. 17: Scalability linear SVM

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 9

Fig. 18: Scalability non-linear SVM

V. CONCLUSION

From the experimental results, we can conclude that ML

approaches have advantages over traditional approaches of

detecting XSS attacks. ML approach combined with

traditional approaches can detect XSS attacks with a higher

accuracy. In this paper, we combined the traditional method

of using WAF with ML to detect XSS attacks in web
applications. The future scope of this approach is that ML

approaches can be combined with other traditional approach

like static analysis, dynamic and hybrid analysis to detect

and prevent XSS attacks in web applications.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Cross Site Scripting Exploits and Defense, Jeramiah
Grossman, Rober Hansen, Petko D. Petkov, Anton Rager, Seth
Fogie, Syngress, pp. 2-11

[2] H. Huang, Z. Zhang, H. Cheng and S. W. Shieh, "Web
Application Security: Threats, Countermeasures, and Pitfalls,"
in Computer, vol. 50, no. 6, pp. 81-85, 2017, doi:

10.1109/MC.2017.183.
[3] Anderson, P. (2008). The Use and Limitations of Static-

Analysis Tools to Improve Software Quality. CrossTalk-
Journal of Defense Software Engineering. 21.

[4] Rami Sihwail, Khairuddin Omar, K. A. Z. Ariffin, A Survey
on Malware Analysis Techniques: Static, Dynamic, Hybrid

[5] G. A. Di Lucca, A. R. Fasolino, M. Mastoianni, and P.
Tramontana, “Identifying cross site scripting vulnerabilities in

web applications,” in 26th Annual International
Telecommunications Energy Conference, pp. 71–80, 2004.

[6] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A
client-side solution for mitigating crosssite scripting attacks,”
in Proceedings of the 2006 ACM Symposium on Applied
Computing, pp. 330– 337, New York, NY, USA, 2006.

[7] E. Athanasopoulos, A. Krithinakis, and E. P. Markatos,
“Hunting cross-site scripting attacks in the network,” in Third

International Conference on Advanced Computing
(ICoAC’11), pp. 89–92, 2011.

[8] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel,

“SWAP: Mitigating XSS attacks using a reverse proxy,” in
Proceeding of 5th International Workshop on Software
Engineering for Secure Systems, IEEE Computer Society,
2009.

[9] B. B. Gupta, S. Gupta, S. Gangwar, M. Kumar, and P. K.

Meena, “Cross-site scripting (XSS) abuse and defense:
exploitation on several testing bed environments and its
defense,” Journal of Information Privacy and Security, vol.
11, no. 2, pp. 118–136, 2015.

[10] S. Chun, C. Jing, H. ChangZhen, X. JingFeng, W. Hao, and
M. Raphael, “A xss attack detection method based on skip
list,” International Journal of Security and Its Applications,
vol. 10, no. 5, pp. 95– 106, 2008.

[11] M. I. P. Salas and E. Martins, “Security testing methodology
for vulnerabilities detection of XSS in web services and ws-
security,” Electron Notes in Theoritical Computer Science,
vol. 302, pp. 133–154, 2014.

[12] Vishnu, B.A.; Jevitha, K.P. Prediction of cross-site scripting
attack using machine learning algorithms. In Proceedings of
the 2014 International Conference on Interdisciplinary
Advances in Applied Computing, Amritapuri, India, 10–11

October 2014; p. 55.
[13] Komiya, R., Paik, I., Hisada, M.: Classification of malicious

web code by machine learning. In: Awareness Science &
Technology (iCAST), pp. 406–411. IEEE (2011)

[14] Likarish, P., Jung, E., Jo, I.: Obfuscated malicious
JavaScript detection using classification techniques. In:
Malicious and Unwanted Software (MALWARE), pp. 47–
54. IEEE (2009)

[15] Wang, W.H., Yin-Jun, L.V., Chen, H.B., Fang, Z.L.: A static
malicious javascript detection using SVM. In: International
Conference on Computer Science and Electronics
Engineering, vol. 40, pp. 21–30. Atlantis Press (2013)

[16] Nunan, A.E., Souto, E., dos Santos, E.M., Feitosa, E.:
Automatic classification of cross-site scripting in web pages
using document-based and url-based features. In: Computers
and Communications, pp. 702–707. IEEE (2012)

[17] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. ACM Press, New York, 1999
[18] Kowsari, Jafari Meimandi, Heidarysafa, Mendu, Barnes, and

Brown, “Text Classification Algorithms: A
Survey,” Information, vol. 10, no. 4, p. 150, Apr. 2019.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 10

[19] Vapnik, V.; Chervonenkis, A.Y. A class of algorithms for
pattern recognition learning. Avtomat. Telemekh 1964, 25,
937–945

[20] Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth

Annual Workshop on Computational Learning Theory,
Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152

ABOUT THE AUTHORS

 Mr. Bronjon Gogoi is a Scientist at

Regional Centre of Excellence for

Application Security, National Informatics

Centre, Guwahati Assam India. His main

area of works include application security,

communication and network, AI and

machine learning.

 Mr. Tasirudding Ahmed is a Scientist at

Regional Centre of Excellence for

Application Security, National Informatics

Centre, Guwahati Assam India. His main

area of works include application security,

communication and network, AI and

machine learning.

 Mr. Hemanta Kumar Saikia is a Scientist
at Regional Centre of Excellence for
Application Security, National Informatics
Centre, Guwahati Assam India. His main
area of works include application security,

communication and network, AI and
machine learning.

