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ABSTRACT- With the increased use of the internet, web 

applications and websites are becoming more and more 

common. With the increased use, cyber-attacks on web 

applications and websites are also increasing. Of all the 

different types of cyber-attacks on web applications and 

websites, XSS (Cross-Site Scripting) attacks are one of the 

most common forms of attack. XSS attacks are a major 
problem in web security and ranked as number two web 

application security risks in the OWASP (Open Web 

Application Security Project) Top 10. Traditional methods 

of defence against XSS attacks include hardware and 

software-based web application firewalls, most of which are 

rule and signature-based. Rule-based and signature-based 

web application firewalls can be bypassed by obfuscating 

the attack payloads. As such, rule-based and signature-

based web application firewalls are not effective against 

detecting XSS attacks for payloads designed to bypass web 

application firewalls. This paper aims to use machine 
learning to detect XSS attacks using various ML (machine 

learning) algorithms and to compare the performance of the 

algorithms in detecting XSS attacks in web applications and 

websites. 

KEYWORDS- Web Application, XSS Attacks, Machine 

Learning 

I. INTRODUCTION 

In today’s digital world, a web application is the most cost-

effective mechanism of software delivery and used by 

millions of businesses and other organizations to deliver 

their services over the internet. Any user equipped with a 

computer and an internet connection can access web 

applications. This easy accessibility of web applications 

also makes them vulnerable to a wide range of attacks from 

malicious users. Among many categories of attack, the XSS 
attack ranks as the number two web application security 

risk. Figure. 1 shows the rank of XSS attacks in comparison 

to other attacks. XSS vulnerabilities are easily exploitable 

as many freely available tools are there to enable anyone 

with minimum knowledge to attack web applications. XSS 

attacks can lead to session hijacking, sensitive data 

disclosure, cross-site request forgery (csrf) attacks, and 

other security vulnerabilities including impersonation of the 

victim. XSS attacks can also lead to code execution on the 

server, depending on the application and privileges of the 

user’s account [1]. At present, web applications adopt an 

XSS prevention or XSS detection and prevention approach. 

In XSS prevention approach, it is the responsibility of the 

programmer or developer to adopt the necessary means to 

prevent XSS attacks. 

 

 
Fig. 1:  XSS Attacks Compared to others 

Developers use filtering, input and output encoding to 

prevent XSS injection attacks [1]. Developers also use 

automated tools to perform static, dynamic or hybrid 

analysis to detect XSS vulnerabilities in web applications 

and to take effective measures to defend against XSS 

attacks. In XSS detection and prevention approach, WAFs 
(Web Application Firewall) are used as a part of XSS 

detection and prevention approach [2]. In WAF based 

approach, WAFs are deployed outside the web application 

servers. WAFs analyse all inbound traffic, detects attacks 

using policy rules or expressions, and block detected 

attacks. In static analysis, the source code of the application 

is analysed using automated tools to discover vulnerabilities 

in the source code. Dynamic analysis tests the application 

by executing tests in real time. The hybrid analysis 

combines both static and dynamic analysis to detect 

injection attacks. The above-mentioned approaches of XSS 

detection and prevention has drawbacks. In the first 
approach of XSS detection using secure implementation, 

the responsibility of defending against XSS attacks rests on 
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the developers. There is no way of defending against 

developer carelessness and hence can lead to XSS 

vulnerabilities in the code, which can be later exploited. 

Moreover, using static, dynamic and hybrid analysis also 

has their drawbacks. The disadvantage of static analysis is 

that results generated by static analysis tools have a high 
False Positive Rate [2] and static analysis tools does not 

support all programming languages. Dynamic analysis tools 

have the disadvantage that they do not cover all execution 

paths and produce high false positives and false negatives 

[3]. The hybrid analysis combines both static and dynamic 

analysis to detect injection attacks. Hybrid analysis has the 

disadvantage that the analysis process is cumbersome and 

time-consuming [4]. WAFs have the drawback that most 

WAF’s are signature or rule based. Signature or rule based 

WAF’s cannot detect zero day attacks and cannot detect 

obfuscated XSS attacks [2]. There also lies the possibility 
of improperly configured rules or signatures that can cause 

the WAF to fail to detect XSS attacks. In this paper, we 

propose a machine learning based WAF to detect the most 

common XSS attacks in web applications. Our approach 

includes the implementation of a Web Application Firewall 

that uses machine learning to detect XSS attacks. The 

remainder of this paper is organized as follows: In section 

II, we discuss XSS attack types work; in section III, we 

discuss related work; in section IV, we discuss our 

proposed approach; in section V we draw our conclusion 

and present the future scope of this study. 

II. XSS ATTACKS 

XSS scripting is a type of injection attack where malicious 

scripts are inserted into the vulnerable web application by 

attackers. The consequences of a successful XSS attack can 

be session hijacking, sensitive data exposure, csrf, and 

impersonation of victims and can even lead to code 

execution on the server, depending on the application and 

privileges of the user’s account [1]. 

There are three categories of XSS attacks [1]. 

A. Stored XSS 

In Stored XSS attack, the attacker inputs malicious scripts 

into a web application, which is then stored in, the target 

server in form of a database record, or log in a webserver. A 

benign user as a part of the website then retrieves the 

malicious script. The malicious script can then access the 

user’s session cookies, and perform actions on behalf of the 

user. Figure 2 illustrates the dataflow of stored XSS attacks. 

B. Reflected XSS  

In Reflected XSS attack, the web application immediately 

returns the data without making it safe for the browser. 

Figure 3 illustrates the dataflow of reflected XSS attacks. 

C. DOM Based XSS 

In the DOM-based XSS attack, the attack payload never 

leaves the browser and the data flow between source and 

sink is entirely within the browser.Figure 4 illustrates the 

dataflow of DOM-based XSS attacks. 

III. LITERATURE REVIEW 

JavaScript has become an unavoidable component when 

developing interactive web applications. XSS attacks pose a 
serious threat to web applications and as such, many works 

has been done to detect XSS attacks. In [5], Di Lucca el al. 

used a combination of static and dynamic analysis to detect 

XSS attacks. Static analysis results in many false positives. 

In order to eliminate false positives, dynamic analysis was 

used to verify the vulnerabilities reported by static analysis. 

Dynamic, static and hybrid analysis is not XSS detection 
but a method of detecting vulnerabilities. Noxes is a tool 

proposed by Kirda et al[6] which is a rule based system to 

detect XSS attacks. 

 

 
Fig. 2:  Stored XSS attack dataflow 

 

Fig. 3:  Reflected XSS attack dataflow 

 

Fig. 4: Dom-based XSS attack dataflow 
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Rule based systems has the drawback that new and zero day 

attacks cannot be detected. xHunter was proposed by 

,Athanasopoulos et al [7]. xHunter checks JavaScript parse 

tree depth and if depth is greater than some threshold value, 

it considers it as suspicious. In [8], Wurzinger et al. 

developed a reverse proxy based solution SWAP(Secure 
Web Application Proxy). Gupta et al. [9] proposed a 

method called XSS-SAFE for XSS attack detection and 

prevention based on automated feature injection statements 

and placement of sanitizers in the injected code of 

JavaScript. The main advantage of this method is that it can 

detect XSS attacks without any modification to client- and 

server-side commodities. Chun et al. proposed XSS attack 

Detection Method based on SkipList[10]. In [11], Salas et 

al. propose an approach, which uses security-testing 

methods like penetration testing, and fault injection for 

detection of XSS attack. Vishnu B A et al. [12] proposed a 
method of detecting XSS attacks using machine learning 

algorithms, extracting the characteristics of URLs and 

JavaScript code and using three machine learning 

algorithms (naive Bayes, SVM, and J48 decision trees) to 

detect XSS. In their approach, they used a manual feature 

extraction technique and the number of features used to 

train the classifiers where very less. Komiya et al. [13] used 

machine-learning techniques to classify user input to detect 

malicious web code. Feature extraction depended on two 

methods, blank separation, and tokenizing. The dataset used 

was very small in their case. Likarish et al. [14] evaluated 
Naive Bayes, ADTree, SVM, and RIPPER classifiers in 

detecting obfuscation of scripts (as a proxy for malicious), 

using features that track the number of times symbols 

appears in benign and malicious scripts. Their approach 

also used a manual feature extraction and the number of 

XSS attack samples used to train was very low. Wang et al. 

[15] where the main idea of feature extraction is that some 

functions are of limited use in the benign scripts, but are 

used much more in malicious scripts, such as the DOM-

modifying functions, the eval function, the escape function. 

Their approach too had a very few samples and used 

manual feature extraction. Nunan et al. [16] expanded the 
approach of Likarish et al., 

where features were categorized into three groups: (1) 

obfuscation based, (2) suspicious patterns and (3) 

HTML/JavaScript schemes. They also used a manual 

extracted feature set and number of features were very less 

and only works on obfuscated JavaScript. 

The machine learning approaches mentioned above focuses 
on separating JavaScript samples, which are XSS attacks, 

and JavaScript samples, which are not XSS attacks. In our 

approach, we focus on separating JavaScript samples, 

which are XSS attacks from normal web application inputs, 

which are not XSS and can include text, numbers and other 

categories of inputs, which can be a combination of text, 

number, and punctuation. 

IV. THE PROPOSED APPROACH 

Figure 5 shows the architecture of the proposed approach of 

detecting XSS attacks using ML algorithms. The proposed 

system is implemented as Apache web server module. We 
developed a custom Apache webserver module that 

intercepts requests to the web application using hooks 

provided by Apache webserver. The intercepted requests 

are then analysed using the ML approach discussed in the 

following section. If the requests are XSS injection attacks, 

the request are dropped and the web application is protected 

from XSS attacks. Figure 6 shows ML pipeline adopted in 

our approach. The data collection, pre-processing, feature 

extraction, and training and evaluation are the most 

important steps in machine learning.  

A. Data Collection 

To train supervised machine learning algorithms we need 

both positive and negative samples. In our case, we need 

samples that are XSS attack payloads and also samples that 

are normal or benign web application inputs. The positive 

samples, which are XSS attack payloads, are collected using 

XSS attack tools XSSTIKE and XSSER.  We also collected 
XSS attack payloads from various sites including GitHub 

and exploit-db. Figure 7 shows the data collection process 

for positive samples. 

Fig. 5: Overall System 
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Fig. 6: Machine Learning Pipeline 

 

 

Fig. 7: Positive XSS attack sample collection process 

 

 
Fig. 8: Benign samples collection process 
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To generate negative benign samples, we use automated test 

data generation tools. Different types of datasets are 

generated using test data generation tools. Web application 

inputs consist mainly of text and numerical data and 

accordingly, we use the data generation tools to generate 

data sets consisting mainly of text and numerical data. 
Figure 8 shows the process of generating negative samples. 

Our dataset consists of 15000 XSS attack samples and 

15000 benign samples. 

B.  Pre-processing and Feature Extraction 

Figure 9 shows our data preparation process. The raw data 
collected is in the form of text data. The raw data is split 

into a training set and a test set in a ratio of 70 to 30. The 

training data is used to train the ML model and the test data 

set is used to test the performance of the model. The 

training and test data set are then transformed into a form 

that is suitable as input to machine learning algorithms. A 

whitespace tokenizer then breaks the text into terms 

whenever it encounters whitespace. TFIDF (Term 

Frequency Inverse Document Frequency) is used for feature 

extraction from the tokenized text. TFIDF is a statistical 

technique that is used to evaluate the importance of a word 

in a document in a collection or corpus [14]. 
TFIDF measure is composed of two statistics, term 

frequency, and inverse document frequency. The formula 

for calculating TFIDF given a word t, a document d, and 

document set D is as follows 

     (     )    (   )     (   ) 

Where: 

  (   )      (      (   ) 
   (   )      (      ⁄ (       )) 

The output of TFIDF feature extraction is a sparse matrix, 
which indicates the TFIDF score for all non-zero values in 

the word vector for each document, which in our case is a 

single positive attack sample or a negative attack sample. 

The sparse matrix becomes the input to our machine 

learning algorithms. 

 

 

Fig. 9: Data preparation process 

C. Training And Evaluation 

Our task is to separate the positive attack samples from 

negative attack samples, which is a binary classification 

task. The most commonly used classification algorithms are 

Logistic Regression, Naïve Bayes, Support Vector 

Machines (SVM), Random Forest, Neural Networks, 

Bagging and Boosting, Deep Learning. In our approach, we 

used the SVM algorithm. SVM has the advantage of being 

robust against overfitting problems, especially for text data 

due to high dimensional space [15]. 

1)  Algorithms 

    In our approach, we have used the SVM algorithm for 

classifying web application inputs as XSS attacks or benign 

inputs. Vapnik and Chervonenkis [16] developed the linear 

version of Support vector machines. Later B.E. Boser et al 

[17] developed the nonlinear version of SVM. SVM can be 

used for binary and multiclass classification but here we 
only consider the binary class SVM since our task is a 

binary classification task. 

Linear Binary class SVM 

Let D be a dataset  

  {(     )|         {      
 

   
 . 

SVM tries to find        and        such that the 

prediction is given by     (    ) is correct for most 

samples. SVM tries to find    and   by solving the 

following optimization problem: 

   
   

 

 
     

             (    )              

The above optimization problem is a convex quadratic 
optimization problem. 

Non Linear Binary class SVM 

The linear binary class SVM can only work for linearly 

separable data but most of the real-world datasets are not 

linearly separable. To overcome this limitation of Linear 

Binary class SVM, Non Linear Binary Class SVM was 

developed. The problem of hard margin classifier is solved 

by adding slack variables    and regularization parameter C. 

The regularized optimization problem then becomes 

   
     

 

 
      ∑  

 

   

 

             (     )                     

2) Training 

     Figure 10 shows our training approach. We trained two 

classifiers. The first classifier was trained using linear SVM 

while the second was trained using non-linear SVM. The 

accuracy and performance of the classifiers depend on the 

hyperparameters of the algorithm. Hyperparameters control 

the learning process.  Hyperparameters cannot be derived 
via training but must be specified by the user of the ML 

algorithm. The process of finding a set of optimal 

hyperparameters for a given ML algorithm is known as 

Hyperparameter Optimization. Grid search, Random search, 

Bayesian Optimization, Gradient-based optimization are 

some approaches to Hyperparameter optimization. In our 

approach, we used Grid search for Hyperparameter 

optimization.  
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Fig.10: Training Process 

 

Machine learning models often suffer from the problem of 

overfitting. Overfitting occurs when the ML model too  

 

closely models the details and noise in the data and fails to 

generalize the relationship between dependent and 

independent variables. 

This failure to generalize leads to the poor ability of the 

model to predict new data. Non-linear ML algorithms are 

more susceptible to overfitting due to the flexibility in 
learning the target function. To prevent overfitting in the 

SVM algorithm, we used k-Fold cross-validation. k-Fold 

cross-validation is a statistical resampling technique where 

the ML model is trained and tested on k subsets of training 

data. In our approach, we used a cross-validation approach 

with a value of k as 10. The Learning curve for linear SVM 

is shown in figure 11. and the learning curve for non-linear 

SVM is shown in figure 12. The learning curve shows that 

the MSE (Mean Squared Error) against the number of 

training samples. From the curve, it is seen that the MSE of 

non-linear SVM is lower than that of linear SVM. Figure 
13. shows the training and validation score for linear SVM 

and Figure 14 shows the training and validation score for 

non-linear SVM. The train and validation curve for linear 

SVM and non-linenar SVM shows that the model is able to 

generalize well and is not overfitting. The score of the 

models can be further improved with more samples.  
 

Fig. 11: Learning curve linear SVM 

 

 
Fig.12: Learning curve non-linear SVM 
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Fig. 13: Training and validation curve linear SVM 

 
Fig. 14: Training and validation curve non-linear SVM 

3) Evaluation 

The accuracy of an ML model is measured based on TP 

(True Positive), TN (True Negative), FP (False Positive), 

and FN (False Negative). TP is the number of correctly 

classified positive samples; TN negative is the number of 
correctly classified negative samples; FP is the number of 

samples that are incorrectly classified as positive and FN is 

the number of samples that are incorrectly classified as 

negative. Concerning our problem, TP is the number of 

samples correctly classified as XSS attacks, and TN is the 

number of samples correctly classified as benign inputs.  

The following performance metrics were used to measure 

the performance of our machine learning algorithms. 

 

a) Precision 

Precision is the ratio of correctly predicted positive 

observations to the total predicted observations. The 

formula for calculating Precision is 

 

           
              

                            
 

 

b) Recall 

The recall is the ratio of correctly predicted positive 

observations to all observations in an actual class. The 

formula for calculating Recall is 



 
International Journal of Innovative Research in Computer Science & Technology (IJIRCST) 

 

Innovative Research Publication   8 

 

        
              

                              
 

c) F1 Score 

F1 score - F1 score is the weighted average of Precision and 

Recall. Therefore, this score takes both false positives and 

false negatives into account. The formula for calculating F1 
score is 

          
                  

                
 

 

We evaluated both the linear SVM model and non-linear 

SVM model against the test data that was set aside for 

evaluation during the data preparation and pre-processing 

phase. 

Figure 15. show the confusion matrix for linear SVM and 

Figure 16. show the confusion matrix for non-linear SVM. 

 

Fig. 15: Confusion matrix linear SVM 

 

Fig. 16: Confusion matrix non-linear SVM 

Figure 13 and 14 shows the graph of training loss and 

validation loss of linear and non-linear SVM respectively. 

The validation loss is lesser than the training loss indicating 

that the model is not overfitting. The precision, recall and 

F1 score for both linear and non-linear SVM are shown in 

Table. 

Table 1: F1 score for both linear and non-linear SVM 

Metric Value 

Precision 0.97 

Recall 0.99 

F1 Score 0.97 

 

Table 2: F1 score for both linear and non-linear SVM 

Metric Value 

Precision 0.98 

Recall 0.99 

F1 Score 0.98 

 

The precision, recall and f1-score of both linear and non-

linear SVM indicates that the algorithms are able to 

successfully separate the XSS attack inputs from benign 

web application inputs. The precision of both linear SVM 

and non-linear SVM shows that false positive rate is less. 
The recall show that false negative rate is less. The f1-score 

shows that there is a balance between precision and 

accuracy, which is desirable in our case as it, shows that 

both false positive rate and false negative rates are low. 

Figure 17 and 18. shows the scalability of linear SVM and 

non-linear SVM respectively. It plots the model fitting 

times in seconds against the number of training samples. 

Though the non-linear SVM performs better in terms of 

accuracy and f1-score, it takes much longer time than the 

linear SVM for model fitting.  

 

 

Fig. 17: Scalability linear SVM 
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Fig. 18: Scalability non-linear SVM 

V. CONCLUSION 

From the experimental results, we can conclude that ML 

approaches have advantages over traditional approaches of 

detecting XSS attacks. ML approach combined with 

traditional approaches can detect XSS attacks with a higher 

accuracy. In this paper, we combined the traditional method 

of using WAF with ML to detect XSS attacks in web 
applications. The future scope of this approach is that ML 

approaches can be combined with other traditional approach 

like static analysis, dynamic and hybrid analysis to detect 

and prevent XSS attacks in web applications. 
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