

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

ISSN (Online): 2347-5552, Volume-13, Issue-3, May 2025
https:/doi.org/10.55524/ijircst.2025.13.3.12

Article ID IRP-1636, Pages 73-75
www.ijircst.org

Innovative Research Publication 73

Text-to-Image Generator Web Application Using React.js

and Node.js for Dynamic Image Creation and Storage

Pervez Rauf1, Md Wasim Khan2, Md Ambar Shafi3, Md Sahil4,, and

Md Shahbaz Shamim5

1Assistant Professor, Department of Computer Science & Engineering, Integral University, Lucknow, India
2, 3, 4, 5B.Tech Scholar, Department of Computer Science & Engineering, Integral University, Lucknow, India

Correspondence should be addressed to Md Shahbaz Shamim

 Received 12 April 2025; Revised 26 April 2025; Accepted 11 May 2025

Copyright © 2025 Made Md Shahbaz Shamim et al. This is an open-access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- The field of generative artificial

intelligence has experienced tremendous growth with the

advent of deep learning-based text-to-image models,

revolutionizing how machines interpret and visualize

human language. This paper presents a comprehensive

overview of a full-stack web-based application designed to

harness this technology for practical and creative use. The

application tries facilitating the generation of images from
text descriptions by integrating frontend and backend
technologies offering a smooth user experience and

efficient performance. The system features a robust

frontend built with React.js, enabling a dynamic and

responsive user interface that supports real-time

interactions. Tailwind CSS is well-used to ensure a

consistent, mobile-first design framework that adapts onto

various screen sizes and devices. On the backend, the

application utilizes Node.js with the Express.js framework

to look on server-side logic, route handling, and

communication with external services. RESTful APIs
bridge the frontend and backend, allowing clean and

scalable request handling between the client and the server.

For media management, the application incorporates

Multer, a middleware for handling multipart/form-data,

which is primarily used for uploading files. This enables

users not only to generate new images from text prompts

but also to upload existing images for display or further

analysis. A gallery interface is provided, allowing users to

browse previously generated content, encouraging

exploration, creativity, and reuse of past results. Central to

the system is the integration of a pre-trained deep learning-

based image generation model, capable of translating
natural language prompts into high-quality, photorealistic,

or stylized images. This model leverages state-of-the-art

transformer architectures and diffusion techniques,

ensuring accuracy and fidelity in the visual output. The

system supports a variety of prompt types, including

descriptive, abstract, and conceptual input, expanding its

applicability across domains such as art, education,

entertainment, and marketing. Extensive testing and

evaluation of the platform confirm its effectiveness in

delivering real-time image generation with low latency and

minimal resource overhead. The application also
demonstrates strong user interactivity features, such as

prompt history, loading indicators, and error handling for

invalid input. Backend optimizations and asynchronous

data handling ensure that large image files are processed

efficiently without degrading the user experience.

KEYWORDS- Text-to-Image Generation, Web

Application, React.JS, Node.Js, AI Image Synthesis, Rest

API, Image Gallery.

I. INTRODUCTION

Text-to-image generation is a good area of artificial

intelligence that’s all about turning written words into

pictures [1] [2]. It lets you type in a description—and an

image based on that description gets created. This kind of

technology has opened new doors in areas like graphic

design, education, entertainment, and digital media. With

the latest advances in deep learning—especially with

models like diffusion and transformers [1][2]AI has

become really better at creating realistic or artistic image

from just a few lines of text. But even though the tech is

impressive, there’s still a problem: most platforms that use
these models are either hard to use or require powerful

hardware and tech know-how that regular users don’t have.

That’s where this project comes in. It’s a web-based

project that makes text-to-image generation easy and

accessible to everyone. You don’t need any special

equipment but just a browser. The front-end is done with

React.js [5], so it’s smooth, modern, and works great on

phones and computers alike. Behind the scenes, Node.js

and Express take care of the server tasks like handling user

requests and running the app’s logic [6]. Using the tool is

simple. You type in what you want to see, and the app
shows you an image created by AI. You can also have a

look through a gallery of past images and even upload your

own. The image generation itself is powered by advanced

APIs like OpenAI’s DALL·E [3] or Stability AI’s Stable

Diffusion [4], depending on what the user needs. All in all,

this project offers a creative and practical way for people

to explore what AI can do. It breaks down barriers to entry,

inspires imagination, and brings powerful tools to

everyone—whether you're a student, a designer, or just

curious.

II. RELATED WORKS

A growing number of platforms now offer text-to-image

generation capabilities by leveraging powerful APIs such

as OpenAI’s DALL·E [3], MidJourney, and Stability AI’s

https://doi.org/10.55524/ijircst.2025.13.3.12
https://doi.org/10.55524/ijircst.2025.13.3.12
http://www.ijircst.org/

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 74

Stable Diffusion [4]. These services have made it possible
to integrate advanced image synthesis into a variety of

applications, leading to increased experimentation and

adoption in both commercial and research settings [1], [2].

Previous studies and implementations have primarily

focused on backend development, utilizing frameworks

like Flask and Django, or deploying directly through

cloud-based services to process user inputs and return

generated images. Although these backend-focused

solutions have proven the feasibility and performance of

AI-based image generation, relatively few academic or

open-source projects have extended their focus to include
fully-featured, user-centric interfaces or robust media

management systems [2]. In many cases, the front-end

functionality is minimal, and file handling, including

uploads and persistent image storage, is either absent or

inadequately addressed. This project advances beyond

existing efforts by implementing a complete full-stack

architecture that emphasizes not only backend integration

and API connectivity but also an engaging and scalable

user interface [2]. The frontend is carefully structured to

support a responsive user experience, offering smooth

navigation and real-time feedback [5], [7]. One of the core

additions is a custom-built image gallery system that
allows users to view, manage, and revisit their generated

content efficiently. Additionally, the application supports

streamlined image uploads, enabling users to contribute or

reuse visual content beyond what is generated by the

model [8]. What sets this system apart is its holistic

approach. Rather than functioning solely as a

demonstration of model capability or backend

performance, it delivers an end-to-end solution that

combines technical depth with an accessible and polished

user experience. This comprehensive design makes the

platform not only practical for developers and researchers
but also inviting for general users, educators, and content

creators [2].

III. METHODOLOGY

The development process involved full-stack architecture

planning and integration of various technologies. The

system consists of multiple interconnected modules as

outlined below:

A. Frontend Development

React.js is utilized to develop a responsive and interactive

user interface, enabling seamless user interactions and

dynamic content updates. Tailwind CSS was integrated to

apply utility-first styling, ensuring that the application

maintains a consistent and adaptive layout across both

mobile and desktop devices. The frontend includes several

key features that enhance usability and user experience.

These use a text input form where users can enter prompts

to generate images, real-time loading indicators that
provide feedback during the image generation process, a

visual gallery that displays previously generated images

with modal previews for detailed viewing, and an upload

interface that allows users to submit and manage their own

image content.

B. Backend and API Integration

Node.js, in combination with the Express framework, was

employed to manage HTTP requests and handle server-

side operations efficiently. RESTful APIs were developed
to facilitate key backend functionalities, including

accepting text prompts from the frontend and forwarding

them to the AI image generation model, returning the

URLs of generated images back to the client, and

managing file uploads while storing relevant metadata in

either a local or cloud-based database. To support file

handling, Multer middleware was integrated, enabling

secure and efficient processing and storage of uploaded

image files.

C. Database Integration

The system uses MongoDB as the primary database for

storing metadata related to user prompts, generated

images, and upload history. MongoDB's flexible schema

design is well-suited for JSON-like data structures and
enables efficient querying and indexing. Mongoose, an

ODM (Object Data Modeling) library for MongoDB, is

utilized to simplify schema definition and database

interactions. The database stores entries that include

timestamps, prompt text, image URLs, user session

information, and tags for organization. For scalability, the

architecture allows optional integration with cloud

databases such as MongoDB Atlas. This enables real-time

synchronization, remote access, and enhanced data

security features, making it ideal for production

deployment.

D. Image Generation

The core image generation functionality of the system is
powered by third-party APIs, including OpenAI’s

DALL·E and locally hosted instances of Stable Diffusion.

These advanced AI models are capable of transforming

natural language descriptions into detailed visual outputs.

When a user submits a text prompt through the frontend

interface, the input is transmitted to the backend, which

then forwards the request to the selected image generation

API. The API processes the prompt using deep learning

techniques—such as diffusion processes or transformer-

based architectures—and generates a corresponding

image. Once the image is created, the API responds using

the help of a URL or binary data representing the image,
which is then returned to the frontend for display in the

user interface. This architecture enables the application to

offer high-quality, AI-generated visuals in real time while

maintaining flexibility in choosing between cloud-based or

locally hosted generation services.

E. Security and Optimization

To maintain system integrity and provide a secure

environment for all users, basic input validation

mechanisms were implemented to sanitize and verify user-

submitted data before it is processed. This helps prevent

common issues such as malformed inputs, injection

attacks, and unintended API behaviour. Additionally, rate

limiting was introduced to restrict the number of requests
a user can make within a specific time frame, thereby

mitigating the risk of abuse, such as spamming the API or

overloading the server with huge traffic. To further

enhance performance and responsiveness, the system has

strategies to temporarily store frequently accessed data

which reduces the need to continuously fetch identical

content from the API or database. This tends to

significantly faster load times and a smoother user

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 75

experience. Also, asynchronous operations were employed
to ensure that time-consuming tasks, such as image

generation or file uploads, do not block the main

application thread. By processing these operations in the

background, the application remains responsive and

capable of handling multiple user interactions

concurrently. Together, these measures contribute to a

more secure, efficient, and user-friendly platform.

IV. EVALUATION AND RESULTS

The system has been thoroughly tested across a variety of

scenarios, including both mobile and desktop web

browsers, to ensure broad compatibility and consistent

performance. Several key evaluation metrics were used to

assess the system’s effectiveness. The "generation

latency", which measures the time from prompt

submission to the display of the generated image, averaged

under five seconds, indicating efficient backend

processing and API response time. The "gallery loading

time" was also optimized, with a good view successfully

loading several images in less than few seconds.
Additionally, the system demonstrated robust performance

in handling uploads, with upload throughput tests

confirming that multiple 5 MB files could be uploaded

simultaneously without triggering timeouts or errors. A

usability study conducted with a group of 20 participants

revealed high levels of user satisfaction. Participants

praised the platform for its ease of use, visually appealing

design, and quality of the images produced. These findings

support the effectiveness of the application in delivering a

responsive and engaging user experience. In conclusion,

this paper introduces a full-stack web application for text-

to-image generation, built using React.js on the frontend
and Node.js on the backend.

V. CONCLUSION

The integration of better AI-based image generation

models with a responsive and user-friendly interface

allows users to generate, upload, and manage visual

content efficiently. The system’s design balances technical

performance with intuitive interaction, making it

accessible for a wide range of users. Looking ahead, future
enhancements could include implementing user

authentication, maintaining prompt history, supporting

multiple generation models, and offering built-in image

editing tools. This project highlights the potential of

combining modern web development frameworks with

artificial intelligence to create powerful and interactive

digital applications.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A.
Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-
image generation,” arXiv preprint arXiv:2102.12092, Feb.
2021. Available from: https://arxiv.org/abs/2102.12092

[2] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton,

S. Ghasemipour, B. Ayan, S. Mahdavi, R. Lopes, T.
Salimans, J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic
text-to-image diffusion models with deep language

understanding,” Advances in Neural Information Processing
Systems (NeurIPS), 2022. Available from:
https://arxiv.org/abs/2205.11487

[3] OpenAI, “DALL·E API documentation.”. Available from:
https://platform.openai.com/docs/guides/images

[4] Stability AI, “Stable Diffusion Documentation.”. Available
from: https://stability.ai

[5] React, “React Documentation.”. Available from:

https://reactjs.org

[6] Express.js, “Express.js Documentation.”. Available from:
https://expressjs.com

[7] Tailwind CSS, “Tailwind CSS Documentation.”. Available
from: https://tailwindcss.com

[8] Express.js, “Multer Middleware.”. Available from:
https://github.com/expressjs/multer

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2205.11487
https://platform.openai.com/docs/guides/images
https://stability.ai/
https://reactjs.org/
https://expressjs.com/
https://tailwindcss.com/
https://github.com/expressjs/multer

