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ABSTRACT- This study suggests a machine learning-

based detection system built with Python and Django to 

tackle the growing problem of fraudulent profiles on social 

networking sites. Malicious actors are progressively 

setting up phony identities for spamming, phishing, and 

disseminating false information as social media usage 

keeps growing. In order to accurately identify bogus 

profiles, the suggested system analyzes user attributes, 

behavioral patterns, and network properties using a variety 
of supervised learning algorithms, such as Random 

Forests, Support Vector Machines, and Decision Trees. 

Our approach makes advantage of Django's powerful web 

framework to produce an intuitive, scalable profile 

monitoring and analysis interface. According to 

experimental data, the overall detection accuracy is 92%, 

with 90% precision and 88% recall rates. The system 

greatly outperforms traditional rule-based approaches in 

both detection accuracy and processing efficiency, 

particularly when handling large datasets. The Django 

implementation provides real-time monitoring 

capabilities, reducing manual verification efforts while 
maintaining high detection reliability. This research 

contributes to enhancing online security by providing an 

effective tool for identifying and mitigating fake profile 

threats on social networking platforms. 

KEYWORDS- Fake Profile Detection, Machine 

Learning, Social Media Security, Random Forest, Support 

Vector Machine, Django, Classification Algorithms, 

Supervised Learning, Data Real-time Detection. 

I.  INTRODUCTION 

The exponential growth of social networking platforms 

over the past decade has transformed how people connect, 

share information, and interact online. While these 

platforms offer numerous benefits, they simultaneously 

present significant security challenges, with fake profiles 

emerging as a particularly pervasive threat. Fake profiles 

accounts created with fraudulent intent serve as vectors for 

various malicious activities including spamming, phishing, 

identity theft, spreading misinformation, and manipulating 
public opinion. The sheer volume of users on major 

platforms makes manual detection of such profiles 

increasingly impractical, necessitating automated 

solutions that can efficiently identify suspicious accounts. 

Traditional approaches to fake profile detection have 

primarily relied on rule-based systems and manual 

verification processes, which suffer from scalability 

limitations and struggle to adapt to evolving deception 

tactics. Machine learning offers a promising alternative by 

enabling systems to recognize complex patterns in user 

data that may indicate fraudulent behavior. Machine 

learning algorithms can detect possible phony profiles with 

high accuracy by examining a variety of factors, including 

user activity patterns, profile traits, and network 

connections. Over time, these algorithms can also adjust to 

new deception tactics. This study offers a thorough 
approach that makes use of Django's web framework and 

Python's data processing powers to create a scalable, 

efficient system for identifying phony profiles on social 

networking sites. 

II.    LITERATURE SURVEY 

Several researchers have explored various approaches to 

fake profile detection in recent years. This section reviews 

key contributions to the field, focusing on machine 

learning techniques and their applications in identifying 
fraudulent accounts on social media platforms. 

It proposed a hybrid approach combining behavioral 

analysis and profile metadata to detect fake accounts on 

Twitter [8]. Their model achieved 87% accuracy by 

analyzing temporal patterns in user activity and account 

creation details. Although the study's platform-specific 

implementation limited its applicability, it did emphasize 

the significance of feature selection in enhancing detection 

accuracy [9]. 

It developed a deep learning framework for detecting fake 

profiles on Facebook using profile images and textual 
content analysis [2]. Their convolutional neural network 

achieved 85% detection accuracy but required significant 

computational resources, limiting its real-time application 

potential. 

It explored ensemble learning techniques for fake profile 

detection, combining multiple classifiers to improve 

accuracy [1]. Their approach achieved 89% accuracy on a 

dataset of Instagram profiles by analyzing user 

engagement patterns and account attributes. The research 

demonstrated the advantages of combining multiple 

algorithms but lacked real-time detection capabilities [10]. 

It implemented a random forest algorithm for detecting 
fake profiles on LinkedIn, focusing on professional 
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network characteristics and endorsement patterns [3]. 

Their model achieved 88% accuracy but was limited by the 

need for extensive network data, which may not be 

available for newer accounts. 

It utilized support vector machines to classify Twitter 

accounts based on content similarity and posting frequency 

[4]. Their approach achieved 84% accuracy in identifying 

bot accounts but showed lower performance when 
detecting manually created fake profiles. 

Developed a graph-based approach for detecting 

coordinated fake accounts by analyzing relationship 

patterns between users [5]. Their method achieved 83% 

accuracy in identifying networks of fake accounts but 

required extensive computational resources for large-scale 

implementation. 

It proposed a real-time detection system using lightweight 

machine learning algorithms optimized for efficiency [6]. 

Their implementation achieved 81% accuracy with 

minimal processing delay, demonstrating the potential for 
balancing performance with computational efficiency. 

Explored the use of natural language processing techniques 

to analyze linguistic patterns in user posts and comments 

for detecting fake profiles [7]. Their approach achieved 

86% accuracy but required substantial historical data, 

limiting its effectiveness for new accounts. 

These studies demonstrate the evolution of fake profile 

detection techniques from simple rule-based systems to 

sophisticated machine learning approaches [13]. However, 

many implementations remain limited by platform-

specific features, high computational requirements, or 

insufficient scalability for large social networks [12]. Our 

research addresses these limitations by proposing a 

comprehensive, platform-agnostic solution implemented 
with Python and Django that balances detection accuracy 

with computational efficiency and scalability [11]. 

III.    METHODOLOGY 

A. System Overview 

The proposed fake profile detection system leverages 

machine learning techniques implemented through Python 

and Django to identify fraudulent accounts on social 

networking platforms. The system architecture consists of 

four primary components: data collection and 

preprocessing, feature extraction, model training and 

classification, and web interface implementation using 

Django.  

B. E-R Diagram 

Figure 1: System Workflow Architecture 

C. Data Collection and Pre-processing 

The system collects user data from social networking 

platforms through API integrations and web scraping 
techniques, where permitted. The collected data includes: 

 Profile Attributes- Username, display name, profile 

picture, biography, account creation date, and other 
public profile information. 

 Activity Data- Post frequency, comment patterns, 

reaction behaviors, and timing of activities. 

 Network Information- Friend/follower count, 

connection growth rate, and interaction patterns with 

other users. 

 Content Characteristics- Text sentiment, image quality, 
and content diversity. 
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The pre-processing module performs several operations to 

prepare the data for analysis: 

 Missing Value Imputation: Replacing missing values 

with appropriate statistical measures (mean, median, or 

mode) depending on the feature distribution. 

 Outlier Detection: Identifying and handling extreme 

values using IQR (Interquartile Range) method. 

 Data normalization: To make sure no one feature 

dominates the model, numerical features are scaled to 

a common range (0–1) using Min-Max scaling.  

 Categorical Encoding: Using methods like one-hot 

encoding, categorical variables are transformed into 

numerical representations. 

Figure 2: Fake Profile Detection System Workflow 

D. Feature Extraction 

The first is profile completeness. This involves checking if 

the profile has a photo and whether the image appears clear 

and appropriate. It also looks at the length and detail of the 

user’s bio, how much of the profile information is filled 

out, and whether the account is verified. Genuine users 
typically provide more complete and authentic 

information, while fake profiles often lack detail or use 

generic placeholders. 

Next is activity pattern. This area focuses on how the user 

behaves over time. It tracks how frequently the user posts, 

how consistent or irregular their activity is, how much of 

their content is original versus shared, and the time gaps 

between their actions. Real users usually have a natural 

flow in their behavior, while fake accounts may follow 

repetitive or unnatural patterns. 

Then come the network features, which examine the user’s 
social connections. These include the ratio of friends to 

followers, the rate at which the account gains connections, 

how tightly connected the user is within small social 

circles, and whether those connections are mutual. 

Authentic profiles tend to grow steadily and engage in two-

way interactions, while fake ones often display imbalanced 

or one-sided networks. 

E. Machine Learning Models 

The system implements multiple supervised learning 
algorithms to classify profiles as genuine or fake: 

 Random Forest: A technique for ensemble learning that 
builds several decision trees during training and 

produces a class that is the average of the classes 

produced by each tree alone. Overfitting that might 

happen with individual decision trees is lessened by 

random forests.  

 In a high-dimensional feature space, the Support 

Vector Machine (SVM) is a potent classification 

technique that determines the best hyperplane to 

distinguish between real and bogus profiles. SVM 

works especially well with complicated, non-linear 

decision boundaries. 

 Decision Trees: A tree-structured classifier where 

internal nodes represent feature tests and leaf nodes 

represent class labels. Decision trees are interpretable 
and can handle both numerical and categorical features. 

 Gradient Boosting: An ensemble method that creates 

trees one after the other, each one attempting to fix the 

mistakes of the one before it. Although this method 

frequently produces great accuracy, it must be carefully 

adjusted to prevent overfitting. 

The Python implementation uses scikit-learn for model 

training and evaluation, with hyperparameter optimization 

performed through grid search with cross-validation. 

F. Django Implementation 

The Django web framework provides the interface and 

backend infrastructure for the fake profile detection 

system: 

 User Interface: A responsive dashboard that allows 

administrators to monitor profile statistics, review 

flagged accounts, and analyze detection metrics. 

 API Integration: RESTful API endpoints for receiving 
profile data and returning classification results, 

enabling integration with existing social networking 

platforms. 



 

International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 
 

Innovative Research Publication   99 

 

 Database Management: Structured storage of profile 

data, feature vectors, and classification results using 

Django's ORM (Object-Relational Mapping) with 

PostgreSQL. 

 Real-time Monitoring: Asynchronous processing of 

profile data to provide near real-time detection 

capabilities, implemented using Django Channels and 
Celery for task queuing. 

 Authentication and Security: Role-based access control 

for system administrators, with secure communication 
channels and data encryption. 

The Django implementation follows an MVC (Model-

View-Controller) architecture: 

Example Django model for profile data 

class Models = username in 

UserProfile(models.Model).(max_length=100) CharField  

  creation_date = models.DateTimeField() 

profile_completeness = models.FloatField() 

activity_score = models.FloatField() 

network_score = models.FloatField() 

content_score = models.FloatField() 

classification = models.CharField(max_length=10, 

choices=[ 

('GENUINE', 'Genuine'), 

('FAKE', 'Fake'), 

('SUSPICIOUS', 'Suspicious'), 

('UNCLASSIFIED', 'Unclassified') 

], default='UNCLASSIFIED') 

confidence_score = models.FloatField(default=0.0) 

models.DateTimeField(auto_now =True class) = 

last_analyzed 

    The meta is as follows: 

    indexes = [models.Index(fields=['username']),  

 models.Index(fields=['classification'])] 

G. System Workflow 

The complete workflow of the fake profile detection 

system is as follows: 

 User profiles are collected from social networking 

platforms through API integrations or provided 

datasets. 

 The feature extraction module calculates relevant 

metrics and generates feature vectors for each profile. 

 The machine learning models are trained on labeled 
data and validated using cross-validation techniques. 

 New profiles are classified by the trained models, with 

results stored in the database. 

 The Django interface displays detection results, 

allowing administrators to review flagged profiles and 

analyze system performance. 

 Feedback from manual reviews is incorporated to 

continuously improve model accuracy through periodic 

retraining. 

IV.   RESULTS AND DISCUSSION 

A. Experimental Setup 

A dataset including 10,000 social media profiles, evenly 

split between real and fraudulent ones, was used to test the 

suggested approach. Profiles from several platforms were 
included in the collection to guarantee testing's diversity 

and resilience. Python 3.9 with scikit-learn 1.0.2 for 

machine learning components and Django 4.0 for the web 

interface were used to create the system. A server running 

Ubuntu 20.04 LTS, an Intel Xeon processor, and 32GB of 

RAM was used for the experiments. 

B. Analysis of  Performance 

The performance metrics for various machine learning 

methods are shown in Figure 3. 

Figure 3: Performance Comparison
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 Table 1: Comparative Evaluation of Classification Algorithms 

 

 

The Random Forest algorithm demonstrated the best 

overall performance, achieving 92% accuracy and an AUC 

of 0.94. See the above table 1, this superiority can be 
attributed to its ensemble nature, which effectively 

captures complex patterns in user data while minimizing 

overfitting. The ROC curves for each algorithm are 

displayed in Figure 2, which also shows the trade-off 

between the true positive rate and the false positive rate at 

different threshold values.  

C. Analysis of Feature Importance 

We used the Random Forest model to do a feature 

importance analysis in order to determine which features 

had the biggest impact on the detection performance. The 

top ten traits are shown in Figure 3 according to their 

importance scores. The most discriminative signs of false 

profiles, according to the investigation, were behavioral 

characteristics, specifically posting patterns and the 

distribution of temporal activity. Strong signals were also 
given by network attributes including the friend-to-

follower ratio and connection growth rate. While content-

based indicators shown less significance but still 

contributed to the overall detection accuracy, profile 

factors such as completeness score and account age were 

somewhat significant.  

D. Comparison with Existing Methods 

The proposed system was compared with three existing 

approaches: a traditional rule-based system, a baseline 

machine learning implementation using only profile 

attributes, and a recent deep learning approach from the 

literature. 

Figure 4: Comparison results

The above figure 4 compares rule-based systems and a 

deep learning approach for fake profile detection across 

accuracy, processing time, and scalability. The deep 
learning method shows the highest accuracy but also the 

highest processing time and lowest scalability. In contrast, 

rule-based systems offer faster processing and better 

scalability but slightly lower accuracy. This highlights a 

trade-off between performance and efficiency in selecting 
detection methods. 

Table 2: Performance Comparison of Fake Profile Detection Methods 

Method Accuracy 
Processing Time 

(ms/profile) 
Scalability Rating 

Proposed System 92% 45 High 

Rule-based System 76% 12 Medium 

Basic ML (Profile-only) 82% 30 High 

Deep Learning Approach 90% 180 Low 

The above table 2 compares various fake profile detection 

methods based on accuracy, processing time, and 

scalability. The proposed system achieves the highest 

accuracy (92%) with moderate processing time and high 

scalability, making it well-balanced. While the deep 

learning approach offers slightly lower accuracy, its high 

Algorithm Accuracy Precision Recall F1-Score AUC 

Random Forest 92% 90% 88% 89% 0.94 

Support Vector Machine 89% 87% 85% 86% 0.91 

Decision Tree 85% 83% 86% 84% 0.87 

Gradient Boosting 91% 89% 87% 88% 0.93 
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processing time and low scalability limit practicality. Rule-

based and basic ML methods are faster but trade off either 

accuracy or adaptability. 

While the rule-based system offered faster processing 

times, its accuracy was significantly lower than our 

proposed approach. The deep learning method achieved 

comparable accuracy but required substantially more 

computational resources, limiting its practicality for real-
time applications. Our system balances high accuracy with 

reasonable processing efficiency, making it suitable for 

deployment on large-scale social networking platforms. 

E. Django Implementation Performance 

The Django implementation was evaluated for its 
responsiveness and throughput under varying load 

conditions. The system maintained an average response 

time of 120ms for profile analysis requests up to a 

concurrency level of 500 users. The database optimization 

techniques, including appropriate indexing and query 

optimization, allowed the system to handle up to 5,000 

profile classifications per minute on the test hardware. 

Figure 5 shows the Django admin interface with detection 

statistics and profile distribution visualization. 

Figure 5: Django Framework

The system's monitoring dashboard provided real-time 

visualization of detection metrics, allowing administrators 

to track fake profile trends and adjust sensitivity thresholds 

as needed.  

V.   FUTURE ENHANCEMENTS 

This research addressed the growing challenge of 

fragmented social identity management by developing a 

comprehensive Unique User Identification System that 
enables seamless integration across multiple social 

networking platforms. The multi-stage profile matching 

approach achieved 92.3% accuracy in identifying 

corresponding identities across diverse platforms, 

significantly outperforming existing methods. User 

experience studies demonstrated substantial improvements 

in social connectivity, with participants reporting a 65% 

reduction in platform switching time and an 83% 

improvement in reconnecting with lost contacts. 

The system successfully balances advanced functionality 

with privacy considerations, providing users with granular 

control over their integrated social presence while enabling 

powerful cross-platform interactions. The microservices 

architecture ensures scalability and adaptability to the 

rapidly evolving social networking landscape, while the 

comprehensive API integration framework accommodates 

diverse platform requirements. 

VI.   CONCLUSION 

This study used Python and Django to propose a thorough 

machine learning-based method for identifying phony 

profiles on social networking sites. Through the analysis of 

a wide range of variables, such as network parameters, 

profile attributes, and user activity patterns, the suggested 

approach showed excellent accuracy (92%) in 

differentiating between real and fraudulent accounts. By 

striking a balance between processing economy and 

accuracy, the Random Forest algorithm proved to be the 
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most successful categorization technique.  

Real-time detection capabilities with manageable resource 

requirements were made possible by the Django 

implementation's scalable, user-friendly profile 

monitoring and analysis interface. The system is 

appropriate for deployment on popular social networking 

sites where human verification procedures are problematic 

due to its capacity to manage massive volumes of profile 
data.  

Future enhancements to the system could include 

incorporating more advanced natural language processing 

techniques for deeper content analysis, implementing 

unsupervised learning methods for detecting novel fraud 

patterns, and developing cross-platform detection 

capabilities to identify coordinated fake profile networks 

spanning multiple social media services. Additionally, 

exploring federated learning approaches could allow 

platforms to collaborate on fake profile detection while 

preserving user privacy. 
As social media continues to evolve, fake profile detection 

systems must adapt to increasingly sophisticated deception 

tactics. The machine learning foundation of our proposed 

system provides the flexibility and adaptability required to 

address these emerging challenges, contributing to a more 

secure and trustworthy social media environment. 
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