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ABSTRACT- The dramatic increase in community-wide
infectious disease data - generated by electronic health
records, mobile health applications and public health data
reporting systems has created opportunities in machine
learning (ML) like never before, to assist with predicting
outbreaks, monitoring diseases and taking community
health-related actions. But due to the sensitive health data,
privacy, security, and legal issues are high. The classical
centralized method of ML creates a risk of revealing
personally identifiable information and can be not in
accordance with the new regulations such as GDPR and
HIPAA. To overcome these issues, privacy-saving
methods, including secure aggregation and differential
privacy, have become the key to the implementation of
legalization of ML on distributed health data. The review
critically reviews the principles, applications and
limitations of these techniques as they are applicable to
infectious disease analytics. It summarises prior studies on
secure aggregation protocols, differential privacy schemes
and federated learning designs, demonstrating the
contribution each contributes to the privacy of sensitive
health information and the utility of models. Also, the
review emphasizes the fact that there are certain key
challenges, i.e., scalability, the problems of accuracy-
privacy trade-offs, and integration with legal frameworks,
and indicates the directions that should be followed in the
future research to enhance the technical and regulatory
compliance. The content of the review is expected to inform
the researcher, policymakers, and practitioners on how to
create effective, secure, and ethically responsible strategies
to community-wide surveillance and analysis of infectious
diseases through the use of ML, as it offers a general idea
about the current approaches to privacy protection in the
context of big data and analytics practice.
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I. INTRODUCTION

A. Global Infectious Diseases and the Need for
Community-Wide Data

Globally, infectious diseases continue to pose an issue in
terms of health in the population [1]. Such diseases as
Covid-19, Influenza, Dengue, and Mpox continue to impact
numerous states at the same time [2]. There are some
diseases that fall temporarily, only to reoccur or in other
regions. The future outbreaks also place the world at risk
due to climate change, population movement and new
strains of the virus.

The recent statistics about health in the world, and not
limited to the region, show that there are cases of infectious
diseases. They are instead found in most regions of the
world and they affect them in varying degrees. This implies
that disease surveillance should not be done on individual
level but at a community and population level.

In the below figure 1 provides an international accounting
of the reported infectious disease cases in six regions of
World Health Organization network: Europe, Western
Pacific, Americas, South-East Asia, Eastern Mediterranean
and Africa (during the period, late January to February
2023). The number of the cases per day with time and the
regional distribution of the cases percentage is shown in
Panels A, B, C and D respectively.

Comprehensively, the data prove that infectious diseases
are common and exist at the same time in various regions.
The greatest cases reported in this period are Western
Pacific and Europe. In Panel B, the Western Pacific area
has slightly more than half of the total reported cases, and
next is Europe, thus more than a third. Americas also have a
significant contribution with South-East Asia, Africa and
the Eastern Mediterranean having lesser proportions.

The A and C panels depict important daily changes in the
number of cases. It is possible to observe several sharp
peaks especially in Western Pacific, Europe and Americas.
These extreme upward movements pull these indicators to
signal an outbreak event or reporting of surging upwards
and not real disease level. Other regions on the other hand
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have lower but maintained levels of cases indicating that
infectious diseases are also still present in the areas even at

relatively low levels of cases.
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Figure 1:

Panel D also throws more weight on the non-uniform
distribution of the disease burden on the regional basis. The
number of cases is high in some areas but low in others yet
all the areas are not free of infectious diseases. This unequal
distribution represents variations in the number of people,
surveillance capacity, risks to local and risk of exposures to
diseases.

Combined, the figure demonstrates that the number of
infectious diseases in the month of February 2023 was not
only worldwide and a community-wide issue, it was not
merely something confined to one nation or the entire planet.
These trends state the requirement of continued data
collection and analysis on the international front. They also
show that large-scale, privacy-preserving data sharing is
required to be effective in infectious disease surveillance and
early warning systems and coordinated responses of the
population health.

Go_to Settings.to aci

Global infectious disease trends across regions during January—February 2023

B. Machine learning in surveillance of Infectious Diseases

Machine learning is widely applied in the sphere of public
health because of the abundance of the existing health data.
The disease spread is predicted with the help of the ML
models and identification of the risk groups of people [3].
These models can be used to enhance the decision-making
process as well as to assist health authorities to react quicker
to outbreaks.

Nonetheless, the majority of ML systems continue to use a
centralized data collection [4]. This implies that the
information of the hospitals, clinics as well as the mobile
devices is relayed to a central server. Although the practice is
applicable in training of the model, privacy and security risks
are serious.

C. Large-Scale Health Data Privacy and Security Factors

Health information is highly confidential. Individual and
behavioral data is often found in community-wide datasets
[5]. Nobody can always be sure that names were removed,
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and people can be recognized again. Consequently, the threat
of breach of privacy increases with increase in data volume.
There are also legal and ethical concerns brought up when it
comes to large-scale data sharing. Such laws as GDPR and
HIPAA demand the efficient protection of personal health
data [6]. In case the privacy that ought to be safeguarded is
lost in the eyes of the people. This could lessen inter
institutional data transfer and closure of successful public
health systems.

The privacy-preserving machine learning techniques have
become relevant in order to overcome these problems.
Federated learning allows the models to be trained without
the interaction of raw data. Protecting the model updates
through secure aggregation during communication [7].
Differential privacy is to restrict the opportunities of getting
sensitive information based on model outputs.

The presented review is devoted to the ways these methods
can be used to make machine learning of infectious disease
data safe, secure, and legally compliant. It summarizes
existing literature, presents issues and find out future
research areas. It is intended to be used to support the
responsible use of ML in community-wide infectious disease
surveillance.

I1. SURVEY SCOPE AND CONCEPTUAL
FOUNDATIONS

A. Scope of This Review

This review is specialized in machine learning methods that
protect the privacy of data related to community-wide
infectious diseases. The major objective is to understand how
the secure aggregation and differential privacy could provide
the safety and legality of the analysis of the data. The review
is grounded in the research in the machine learning, the
public health and the data protection spheres.

The paper will review the subject of distributed data
collection, federated learning systems, privacy risk, and legal
issues. It does not present novel experiments or data sets.
Besides that, it also highlights and connects research, which
exists. The narrative-integrative approach is the basis of the
review. This implies that it describes the ideas of what
something is, compares how things are done and exposes
gaps in current knowledge.

This is focused on the community-wide information, and not
on single clinical studies. Data at community level plays a
significant role in termination of outbreaks and monitoring
the disease. Nevertheless, they present privacy threats as
well. That is why these aspects as privacy and security are
considered as one of the design requirements in this review.

B. Community-Wide Infectious Disease data

A vast number of sources have community-wide infectious
disease data. Such entities are hospitals, clinics, laboratories,
and public health agencies and the mobile health applications
[8]. Part of the data is gathered on a daily basis, and at
massive amounts. Certain ones are case numbers, test results,
mobility patterns and symptoms reports.

One may see the changing cases of infectious diseases in the
global regions in January and February 2023 using Figure 1.
The greatest number of cases is in Europe and the western

pacific then the Americas. There are less cases reported in
South-East Asia, Africa and the Eastern Mediterranean, but
cases are reported. This demonstrates that infectious diseases
affect every region except that some are not affected equally.
The figure also shows that the number of cases is dynamic
with time. Certain days are drastically rising and some days
have less values. Such changes may be attributed to
outbreaks, delays or variance in surveillance systems, or
reporting. This fluctuation characterises a complicated and
dynamic infectious disease data.

Due to these variations, there is no single set of data that is
capable of capturing all the trends of diseases all over the
world. The information is spread across territories,
organizations and nations. The reporting and health policy
regulations may differ in each region. This renders
centralized data collection problematic and dangerous.

C. Surveillance of Infectious Diseases by Machine
Learning

The method of machine learning is typically used to handle
the data connected to the infectious disease. Patterns,
forecasting the propagation of an illness, and assisting an
early warning system can be identified with the help of ML
models [9]. These tools would help the authorities in public
health to make improved and quicker decisions.
Conventional ML systems generally make all data be located
at a central location. This is a serious challenge which is
centralized. The transfer of sensitive health data to a central
server will put the data at risk of being breached and misused
(Seh et al., 2020). It is also a source of legal problems in case
data transfers with national or regional borders.

To this, centralised learning is even harder because of the
regional variation as evidenced by Figure 1. Europe, Western
Pacific and American data are commonly gathered using
disparate legal and technology systems. The transfer of raw
data between regions may be in conflict with laws of data
protection or health policies in the area. Due to this
heterogeneity of the region, there is a need to have
distributed approaches to learning. The federated learning
allows model training in different places without exchanging
raw data [11]. Individual data holders individually train the
model and exchange model updates. In this manner,
collaboration can be facilitated and at the same time less data
can be exposed.

D. Threats in Distributed Health Data privacy

Privacy risks are even apparent in the case of federated
learning. Health information is confidential and the
information can still be leaked even by updating the model.
The attackers can seek to infer confidential data by observing
publicly available updates or model outputs [12]. In the
literature, a number of threats to privacy models have been
determined. These consist of inference attacks, where an
attacker tries to find out whether the data of the person was
used during training. The other risk is model inversion where
sensitive information has been inverted into model
parameters. The communication attacks may also occur
when data is being transferred between the server and the
client or vice versa [13].
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The breach of privacy may arise in a situation where local
training, model update, server aggregation, and model
rerelease to users occur [14]. Without the protection of these
stages, they can reveal confidential information. Secure
aggregation is intended to minimize the threats of model
updates sharing. It ensures the joint updates and not
individual contributions can be seen by the server.
Differentiation privacy is a technique of introducing noise to
data or model updates so as to minimise what can be known
about any given individual [15]. It is necessary to know these
threat models before the implementation of privacy-
preserving methodologies. Even distributed systems may
have privacy law and ethical compliance breaches without
express protection.

E. The Privacy Preserving and The Legal Compliant ML
motivation

Since the infectious disease data currently varies at the
global and the regional level as seen in Figure 1, there is the
great necessity of cooperation between institutions and
regions. Simultaneously, the issues of privacy and legal
limitations make the scheme of sharing raw data unsafe and
quite infeasible. The federated learning, secure aggregation
as well as differential privacy provide a feasible resolution,
they allow the training of distributed data without
compromising privacy [16]. Such practices are also in line
with legal principles like privacy by design and data
minimization.

This review expands on these ideas to explain why safe and
effective infectious disease surveillance can be achieved
through privacy preserving machine learning. The following
sections provide a summary of secure aggregation and
differential privacy at a more detailed level, their advantages,
and their weaknesses, as well as unresolved gaps in research.

I1l. FEDERATED LEARNING SECURE
AGGREGATION
A. Meaning and Purpose of Secure Aggregation

One of the critical methods in federated learning is secure
aggregation that secures sensitive data in the training of

models [16]. Data may be obtained in large numbers of
hospitals, laboratories, and regional health systems in
community-wide analysis of infectious diseases. These data
contain very sensitive data like the infection status, place,
and diagnosis time. There are a significant privacy and legal
risk associated with sharing such data in its raw form. Secure
aggregation can solve this issue through the participation of
multiple parties training a machine learning model together
without disclosing their personal data or updates.

The federated learning has every participant locally training
the model on its own data. Raw data is not sent to a central
server but only model updates are distributed. Nonetheless,
the even updates may be prone to leakage of personal
information by inference attacks, or by inversion of the
models [16]. Secure aggregation allows avoiding this by
making sure that no participant is visible to the server but
only the aggregated outcome of all updates. Consequently,
each individual hospital or user cannot be recognized in the
aggregate model update.

This method is particularly valuable in systems that involve
infectious disease monitoring in which data are spread out
geographically and are subject to various legal regulations.
Secure aggregation is what allows creating a common model
worldwide and retaining local data confidential and locally
managed. This does not compromise privacy laws or moral
principles because it allows a massive collaboration.

B. Secure Aggregation Workflow and Architecture

A typical secure aggregation process in federated learning
entails a number of synchronized elements that encompass
the administration of keys, local calculation, encrypted
communication, and aggregation centralization [17]. In
Figure 2, a secure aggregation process is illustrated,
including the generation of keys, the local model training
process, the sharing of encrypted updates, the cloud-based
process of aggregation, and the global model update. Such a
workflow will be used to make sure that sensitive health
information is never shared directly, as well as the updates
made to individual models are hidden.

Public & partial private key %

Key generation center s—-—-~-~-~—

~
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-~ =-= Computation provider

Middle results
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Figure 2: Secure aggregation workflow with key generation and computation provider
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Federated learning is an important technique that involves
secure aggregation to protect sensitive information in model
training [17]. Many hospitals, labs, and regional health
systems are often involved in the collection of data in
community-wide analysis of infectious diseases. This
information presents very sensitive data that could include
but not limited to infection status, place and time of
diagnosis. This type of data sharing in a raw form poses
highly privacy and legal dangers. The secure aggregation
addresses this problem as it allows the training of a machine
learning model within a group of participants, without
sharing any of their data or updates.

In federated learning, the participants are locally training the
model with their data. Data is not transmitted to a central
server as raw data, but rather only modifications are made in
a model. Nonetheless, such updates can also be compromised
by the possibility of intimate privacy breaches by inference
attacks or model inversion methods [18]. Secure aggregation
assists in avoiding this by making sure that the server is only
provided with the aggregate of all the updates, but not the
contribution by any individual participant. Consequently, the
aggregate model update is not identifiable to the individual
hospital/user.

This is more essential to infectious disease surveillance,
where the information is spread geographically and is
incongruent with legal jurisdiction. The concept of secure
aggregation makes it possible to build a common global
model and maintain the privacy of local data and local
control over it. This is useful in assisting massive
cooperation without violating privacy regulations or moral
principles.

C. Aggregation Architecture and Workflow: Secure

A typical secure aggregation process in federated learning
consists of a number of coordinated entities, including key
management, local computation, encrypted communication
and centralized aggregation [17]. Figure 2 shows a safe
aggregation algorithm, which involves key generation, local
model training, thoughts on encrypted updates, cloud and
global model update. The flow of work guarantees the fact
that no sensitive health information is shared and no model
updates are ever visible.

To begin with, there is a key generation mechanism which is
employed to produce cryptographic keys of the participants.
These keys will allow every client to encrypt the local model
update, which it will send to the server. The individual
updates are not visible on the transmission and storage due to
the encryption. Some systems leave control of these keys to
one or more trusted or semi-trusted. It is not the case that the
computation server will have access to raw updates.

Second, the training of the model is training it locally by
individual participants using their own infectious disease
data. This local training step is applied to extract region
specific patterns like local outbreak or seasonal patterns of
disease. Once the training process has been completed, the
local model is used in encrypting the parameters with the
assigned keys. Privacy can be ensured at this point because
there are no raw data and readable updates that depart the
local device or institution.

Third, the server receives encrypted updates of all
participants only. It aggregates on these encrypted values
directly producing an aggregated result, a learning
combination of the group. Due to the encryption of the
updates, the server is not allowed to view or isolate the
contribution of any particular participant. Only upon
aggregation, it is the final result that is decrypted in order to
update the global model.

Such a workflow is capable of facilitating learning in a broad
area of regions, with confidentiality of the data. The figure
assists the readers of the flow of process though the overall
point of the figure is widely applicable in most of the secure
aggregation protocols that are applied in healthcare research.

D. Threat Models Privacy Protection

Secure aggregation aims to offer some of the most prevalent
privacy threats in federated learning systems security. The
honest-but-curious server is one of the greatest threats, which
adheres to the protocol, yet attempts to find information in
the acquired updates [19]. This threat can be mitigated using
secure aggregation, where the server does not receive the
update of individual values, only aggregated values.

The other threat is an inference attack whereby attackers aim
at regaining sensitive information of model updates [20].
These attacks may compromise patient level information
including their infection status or demographic details
without protection. Secure aggregation addresses this risk by
masking individual updates in a group sum, and hence it is
very hard to reconstruct.

Nonetheless, the secure aggregation is not the comprehensive
answer. In case participants involved in a training round are
very few, then privacy assurances can be compromised. An
attack on dropouts where certain clients exit the system
intentionally or accidentally may also occur [21]. These
constraints imply that secure aggregation should be
developed sensitively and frequently paired with other
methods like different privacy to provide greater defense.

E. Research Gaps, Limitations and Strengths

Obvious benefits of community-wide infectious disease
modeling can be gained through secure aggregation. It
enables institutions to collaborate with each other and follow
data ownership principles and reduce legal risk by retaining
sensitive data locally [22]. It also increases the level of trust
in the people, which is necessary in massive health data
initiatives. Simultaneously, there is additional overhead in
computation and communication on the part of the
aggregation. Complexity of the system also includes
encryption and management of keys that are not simple to
the low-resource healthcare setting [23]. Scalability is the
other problem when there are thousands of people.

Future studies address the enhancement of the protocols, the
more efficient working with client dropouts, and the stronger
protection of the advanced attacks. Also, the need to make
sure that the secure aggregation designs are consistent with
legal and regulatory provisions increases. These gaps will be
of significance to deploy secure and legally-compliant
machine learning systems in the real-world public health
settings.

Innovative Research Publication

163



International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

IV. FEDERATED LEARNING PRIVACY RISK

Despite the use of federated learning, there are still privacy
hazards that are faced in various phases of training. The
Figure 3 demonstrates the workflow of federated learning
and outlines the main aspects at which privacy violations can
be made. This is because the first model is distributed to an
engineer and several users, where they are trained locally
with personal data. The trained updates are sent to a central
point computer to be federated. The lightning icons in the

Engineer

Initial model

user4 Data Collection

Server

Federated
Computation

figure represent the possible privacy risk when transferring
data, aggregation at the server side and the exposing of the
model to the engineers. These dangers consist of updating
interception, model parameter inference, and reconstruction
of sensitive user data. The figure explicitly indicates that
privacy leakage is not completely removed by federated
learning despite the fact that raw data are still local and this
is why the implementation of differential privacy
mechanisms is necessary.

Possibility of @
privacy breach

User 1

3

User 2

Updated user3
model

Activate W
CULE R

Learning
& Updated
Model

Figure 3: federated learning workflow

Privacy threats occur at different stages of the training
process even in a federated learning case where such a
learning is abused. As Figure 3 illustrates, the federated
learning workflow presents the emphasis and highlights
some of the locations where the privacy breaches might
occur. The first model is transferred to a few users by an
engineer, which trains the model locally on their own private
data. The federated computation is performed through
transmitting the trained updates to a central server. The
figure has lighting indications which signify the potential
risk of privacy, in case of data transmission, aggregation in
the servers, and engineering access of models. Such risks are
interception of updates, inference of model parameters,
reconstruction of sensitive user data. It is evident in the
figure that although raw data still remains local, federated
learning alone does not completely avoid the leakage of
privacy and thus warrants the adoption of differential privacy
mechanisms.

During the data collection step, the users/institutions train
models and send the update to a server in their local
environment. Assuming that these updates are not properly
secured and sent, attackers might intercept the
communications or the attacker may use the patterns of
updates to interpret them. This type of attack can reveal the
characteristics of sensitivity, including details of disease
condition or demographics.

This danger increases with an abundance of updates, or
when the number of participants is limited.

The aggregation process itself is also a possible point of
attack on a server level. An inquisitive server or an ill-

intentioned employee working inside can attempt to peep
into what is going in upgrades or compare one version of the
models to another in order to deduce -confidential
information. Sensitive information can leak out even when
using the system by engineers who are either managing the
system or deploying it unless the privacy is tight.

Lastly, during the model distribution phase, the participants
are supplied with the model updates. In case such models
capture excessive information on individual sample data,
attackers can execute membership inference attacks or model
inversion attacks. Figure 3 identifies these weak spots and
shows that federated learning is insufficient to make privacy
threats a nonexistent problem.

A. The way Differential Privacy Remedies These Risks:

Differential privacy reduces such risks by limiting the
contribution any given participant has on the final model.
This is typically done by introducing noise to model updates
prior to sharing or aggregating [24]. Therefore, whereas, an
attacker can possibly access the updates or the models, the
noise makes it very hard to obtain meaningful personal
information.

Differential privacy may be implemented on various levels in
federated learning systems. Local differential privacy: noise
is introduced at the client side and then the updates are sent
on the device - a very strong privacy property but poor
model performance Central differential privacy: noise is
added after the aggregation process which tends to be much
more accurate but needs to trust the aggregation server. The
systems will be able to receive a layered protection by
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integrating differential privacy and secure aggregation
systems. Secure aggregation closely conceals the individual
update and differential privacy does not allow any
information to leak out even of the aggregated output. When
combined, they provide more protection against external
aggressors and internal threats.

B. Privacy-Accuracy Trade-offs and Practice:

One of the biggest issues of differential privacy is the
privacy versus performance trade-off on the model. More
aggressive privacy guarantees require additional noise, and
this might lead to inaccurate model. The problem of low
accuracy may affect the detection of outbreaks or resource
plans in the infectious disease prediction, and thus, the
tradeoff is significant. A careful choice of the privacy
parameters must be made by researchers in order to attain the
balance between protection and utility. Practically, this
balance is founded on the practicality, sensitivity of the
information and the degree of risk which can be taken. Small
or highly imbalanced datasets can be more expensive to
performance loss as well as large datasets can be relatively
more noise-tolerant.

The difficulty of the systems is another challenge.
Differential privacy must be implemented with a bit of care
and professional skills [25]. Systems that are not properly
configured can give an illusion of security or even breach
privacy assurances. These issues highlight the significance of
uniformity in guidelines and tools to use in the application of
the differential privacy in the field of health.

C. Compliance to Law and Research Gaps:

Different privacy is significant towards meeting the legal and
ethical demands of handling health information. A
significant number of the data protection laws are aimed at
minimizing data, anonymizing and risk reduction.
Differential privacy directly promotes such principles by
restricting the levels of exposure of the individual-level.
Although it has been strong, it has a number of research
gaps. Further development is needed to obtain higher
precision in the strict privacy budgets (especially detection of
rare diseases). Little is also known concerning the manner in
which privacy parameters that are legal can be selected. The
adaptive privacy mechanism and improving the linkage
between technical and regulatory complies should be a
research topic in the future.

V. LEGAL AND ETHICAL COMPLIANCE

A major problem that can be raised in connection with the
machine learning context is legal and ethical compliance that
can be achieved when working with sensitive health or
personal data [26]. A combination of federated learning with
secure aggregation and differential privacy provides a
feasible means of reducing risks associated with the failure
to comply with privacy regulations including the General
Data Protection Regulation (GDPR) in Europe, or the Health
Insurance Portability and Accountability Act (HIPAA) in the
United States [27]. It is possible to note that during the
training of a model, the user data are stored on the local
devices as indicated by the conceptual workflow in Figure 2

and Figure 3. Model updates as opposed to raw data are only
shared with a central server. Secure aggregation ensures that,
such updates are aggregated in a manner that the server or
any external viewer would not be able to get access to the
individual contributions. This process is directly connected
with the idea of minimizing the data, which is one of the
most important values of GDPR, as personal information is
never revealed or concentrated at all. Differential privacy
provides an additional level of compliance ensuring that
compliance occurs by introducing noise on the model
updates, which makes it mathematically challenging to learn
anything about any individual [28]. These techniques
combined reflect the principle of privacy-by-design, which
proposes privacy protection to be implemented at the system
architecture level, as opposed to being applied as an
afterthought. Another way of promoting compliance is by
adopting access controls and auditing systems and by making
sure that only authorized individuals can work with model
updates or aggregated outcomes. Through a federated
learning method combined with secure aggregation and
differential privacy, organizations will be able to
demonstrate that they have made optimal efforts to make
sure that sensitive information is secured, restricted, and
compliant with the legal and ethical provisions of the major
privacy frameworks. This combined effort reduces the
possibility of incurring regulatory infractions, assists in
ensuring that the operations are congruent with ethics so that
gathering, storing and processing of valuable health data is
carried out in a responsible manner. The conceptualized
workflow shown in Figure 2 and Figure 3 shows the various
levels of protection such that the data is stored locally, the
communication is encrypted and the aggregation and
redistribution would not be designed in a way to leak out. By
doing so, the framework will be technically well-grounded
and legally and ethically well-grounded, which will offer a
practical plan of how secure and compliant machine learning
can be in healthcare applications, in the real world.

VI. INTEGRATED FRAMEWORK

In order to establish privacy protection and still be legal, a
combined system consisting of federated learning and secure
aggregation and differential privacy can be implemented.
The conceptualization of Figure 2 and Figure 4 explain how
decentralized sources of data can be used to train a model
without concentrating on sensitive information. The storage
of raw data in this framework is done on the local device of
each user and the computations are done locally. The updates
are then transferred safely with the help of aggregation
protocols, which do not permit the central server of knowing
the individual contributions. The aggregated updates are
done using differential privacy, as a form of additional
obfuscation of the possibility of a leak of private data. The
integrated process may be considered a layered architecture
at the bottom, there are distributed data sources, which are
inputs to the federated learning system with secure
aggregation. The middle tier employs the concept of
differential privacy on the aggregated model in such a way
that the input of each participant in the data is
mathematically safeguarded. Lastly, a layer of law-abiding
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presents a top-down method to the computation workflow
and guarantees such ideas as privacy-by-design, data
minimization, and adherence to regulations. With this
architecture, the results of the model can be distributed to the
researchers or decision-makers without compromising
individual privacy. The framework also allows the ongoing
learning and change as updates are made in a piece-meal
manner and privacy-sensitive, which is highly important in
areas like the medical field where data continuously change.
In principle, then, this architecture means that the technical,
legal and ethical concerns are closely fixed together. The
distributed computation eliminates the threat of centralized
attacks, an aggregation that defends against unauthorized
access and during and the communication, and differential
privacy eliminates the threat of inference attacks on the

Federated

model itself. Law observance is enhanced through the
paperwork of all the processes and evidence of the system in
compliance to the norms of GDPR, HIPAA or other legal
acts. This cumulative system provides a comprehensive
privacy-conscious machine learning system: it enables joint
model training, reduces exposure to sensitive data, and does
not violate ethical and legal standards. The diagram below
was used as a visual representation towards reinforcing the
idea of each layer playing a role in ensuring privacy
protection as well as regulatory compliance besides offering
a clear and workable blueprint of what is needed to be
implemented in the application of the concept in real-life
application. When integrated within one  system,
organizations will be able to make sure that machine learning
models are efficiently, securely, and responsibly trained

Eldilaie: Learning + Differential Leg.a I Model
Data Secure Privac ECD ke Output
Sources y / Layer / P

Aggregation

N

Figure 4. Integrated Workflow Diagram

VII. OPEN CHALLENGES & FUTURE
DIRECTIONS

Federated learning (FL) is a new approach towards utilizing
the information provided by different users without access to
the raw data. Still, according to Figure 2 and Figure 3, there
are still several privacy risks. Attackers can intercept or
analyse updates sent by users to the server. It can be the
server itself which can be attacked. The updated model can
give sensitive information even during aggregation,
depending on how weak the protection is. These weaknesses
limit the use of FL to the real-life health applications.
Lightweight differential privacy (DP) is one of them. A
significant number of customers use FL with their mobile
devices. Mobiles have low calculating capabilities [29]. The
existing DP techniques are bulky and slow and this reduces
the rate of training. Studies are required to come up with DP
that can effectively operate in mobile devices but safeguard
privacy.

Attack resistant aggregation is another problem. Aggregation
in this case (see Figure 2) takes place at the server. Assuming
that attackers control part of the users or execute
manipulative updates, they can cause bias on the end model.
Attacks should be detected and prevented by new
aggregation techniques; the model should be kept reliable
and secure.

Also, a major goal is real-time outbreak detection. Figure 1
demonstrates that there is a great region-specific variation of

infectious diseases. It is in dire need of the data collection
and process in time to respond to outbreaks. The federated
learning must be able to update faster and give early
warnings, without violating privacy.

Other research directions include combining the idea of
federated learning and secure computation, or combining
adaptable machine learning models to the differences in the
disease prevalence between regions. Confidentiality laws
like GDPR also imply that one has to be careful when
dealing with health information. More confidence will be
developed in FL systems through the use of methods that
comply with legal requirements and are effective. To
conclude, Figure 2 and Figure 3 indicate that privacy
violation and attacks may occur at various levels. The future
studies should address these weak points and rectify them,
and enhance efficiency of mobile and cloud systems, and
generate dependable insights and real time to public health.

VIIl. CONCLUSION

As presented in this review, on-hand infectious disease
statistics, such as Figure 1, indicate the necessity to conduct
massive health surveillance. The effects of the disease
transmission of covid-19, dengue, and other infectious
diseases vary in various regions. A collection of data in
communities is an essential procedure but has privacy risks.
Federated learning is a model training methodology that does
not involve the exchange of the raw data. Figure 2 and
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Figure 3 demonstrate the functioning of FL and the points of
privacy risks. Aggregation is safely made to ensure that
separate updates are safely put together. Differential privacy
limits the contribution made by each user and limits
inference attacks. The combination of the techniques allows
securing technical and legal standards to manage sensitive
health information.

The gaps and challenges are also determined in the review.
The mobile applications need lightweight different privacy.
Methods of aggregation must also withstand attacks and
systems must have the ability to identify the outbreaks in real
time. FL also needs to respond to variations in the prevalence
of diseases across regions as indicated in Figure 1. To sum
up, privacy-preserving machine learning is significant to the
public health use. Figure 1, Figure 2, Figure 3 provide us
with a reasonable notion of the actual world motivation,
workflow of federated learning and potential privacy threats.
The combination of both secure aggregation and differential
privacy addresses the majority of these issues. The future
research area would be to increase efficiency, privacy versus
attacks, and patterns of disease in the region. This will enable
effective, quick and secure monitoring of the population
health to enable community to react to the threat of
infectious diseases without compromising privacy.
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