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ABSTRACT- The dramatic increase in community-wide 

infectious disease data - generated by electronic health 

records, mobile health applications and public health data 

reporting systems has created opportunities in machine 

learning (ML) like never before, to assist with predicting 

outbreaks, monitoring diseases and taking community 

health-related actions. But due to the sensitive health data, 

privacy, security, and legal issues are high. The classical 

centralized method of ML creates a risk of revealing 

personally identifiable information and can be not in 
accordance with the new regulations such as GDPR and 

HIPAA. To overcome these issues, privacy-saving 

methods, including secure aggregation and differential 

privacy, have become the key to the implementation of 

legalization of ML on distributed health data. The review 

critically reviews the principles, applications and 

limitations of these techniques as they are applicable to 

infectious disease analytics. It summarises prior studies on 

secure aggregation protocols, differential privacy schemes 

and federated learning designs, demonstrating the 

contribution each contributes to the privacy of sensitive 

health information and the utility of models. Also, the 
review emphasizes the fact that there are certain key 

challenges, i.e., scalability, the problems of accuracy-

privacy trade-offs, and integration with legal frameworks, 

and indicates the directions that should be followed in the 

future research to enhance the technical and regulatory 

compliance. The content of the review is expected to inform 

the researcher, policymakers, and practitioners on how to 

create effective, secure, and ethically responsible strategies 

to community-wide surveillance and analysis of infectious 

diseases through the use of ML, as it offers a general idea 

about the current approaches to privacy protection in the 
context of big data and analytics practice. 
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I.   INTRODUCTION 

A. Global Infectious Diseases and the Need for 

Community-Wide Data 

Globally, infectious diseases continue to pose an issue in 
terms of health in the population [1]. Such diseases as 

Covid-19, Influenza, Dengue, and Mpox continue to impact 

numerous states at the same time [2]. There are some 

diseases that fall temporarily, only to reoccur or in other 

regions. The future outbreaks also place the world at risk 

due to climate change, population movement and new 

strains of the virus. 

The recent statistics about health in the world, and not 

limited to the region, show that there are cases of infectious 

diseases. They are instead found in most regions of the 

world and they affect them in varying degrees. This implies 

that disease surveillance should not be done on individual 
level but at a community and population level. 

In the below figure 1 provides an international accounting 

of the reported infectious disease cases in six regions of 

World Health Organization network: Europe, Western 

Pacific, Americas, South-East Asia, Eastern Mediterranean 

and Africa (during the period, late January to February 

2023). The number of the cases per day with time and the 

regional distribution of the cases percentage is shown in 

Panels A, B, C and D respectively. 

Comprehensively, the data prove that infectious diseases 

are common and exist at the same time in various regions. 
The greatest cases reported in this period are Western 

Pacific and Europe. In Panel B, the Western Pacific area 

has slightly more than half of the total reported cases, and 

next is Europe, thus more than a third. Americas also have a 

significant contribution with South-East Asia, Africa and 

the Eastern Mediterranean having lesser proportions. 

The A and C panels depict important daily changes in the 

number of cases. It is possible to observe several sharp 

peaks especially in Western Pacific, Europe and Americas. 

These extreme upward movements pull these indicators to 

signal an outbreak event or reporting of surging upwards 

and not real disease level. Other regions on the other hand 

https://doi.org/10.55524/ijircst.2025.13.6.17
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have lower but maintained levels of cases indicating that 

infectious diseases are also still present in the areas even at 

relatively low levels of cases. 

 

Figure 1: Global infectious disease trends across regions during January–February 2023 

Panel D also throws more weight on the non-uniform 

distribution of the disease burden on the regional basis. The 

number of cases is high in some areas but low in others yet 
all the areas are not free of infectious diseases. This unequal 

distribution represents variations in the number of people, 

surveillance capacity, risks to local and risk of exposures to 

diseases. 

Combined, the figure demonstrates that the number of 

infectious diseases in the month of February 2023 was not 

only worldwide and a community-wide issue, it was not 

merely something confined to one nation or the entire planet. 

These trends state the requirement of continued data 

collection and analysis on the international front. They also 

show that large-scale, privacy-preserving data sharing is 

required to be effective in infectious disease surveillance and 
early warning systems and coordinated responses of the 

population health. 

 

 

 

B. Machine learning in surveillance of Infectious Diseases 

Machine learning is widely applied in the sphere of public 

health because of the abundance of the existing health data. 

The disease spread is predicted with the help of the ML 

models and identification of the risk groups of people [3]. 

These models can be used to enhance the decision-making 

process as well as to assist health authorities to react quicker 

to outbreaks. 

Nonetheless, the majority of ML systems continue to use a 
centralized data collection [4]. This implies that the 

information of the hospitals, clinics as well as the mobile 

devices is relayed to a central server. Although the practice is 

applicable in training of the model, privacy and security risks 

are serious. 

C. Large-Scale Health Data Privacy and Security Factors 

Health information is highly confidential. Individual and 

behavioral data is often found in community-wide datasets 

[5]. Nobody can always be sure that names were removed, 
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and people can be recognized again. Consequently, the threat 

of breach of privacy increases with increase in data volume. 

There are also legal and ethical concerns brought up when it 

comes to large-scale data sharing. Such laws as GDPR and 

HIPAA demand the efficient protection of personal health 

data [6]. In case the privacy that ought to be safeguarded is 

lost in the eyes of the people. This could lessen inter 

institutional data transfer and closure of successful public 
health systems. 

The privacy-preserving machine learning techniques have 

become relevant in order to overcome these problems. 

Federated learning allows the models to be trained without 

the interaction of raw data. Protecting the model updates 

through secure aggregation during communication [7]. 

Differential privacy is to restrict the opportunities of getting 

sensitive information based on model outputs. 

The presented review is devoted to the ways these methods 

can be used to make machine learning of infectious disease 

data safe, secure, and legally compliant. It summarizes 
existing literature, presents issues and find out future 

research areas. It is intended to be used to support the 

responsible use of ML in community-wide infectious disease 

surveillance. 

II.  SURVEY SCOPE AND CONCEPTUAL 

FOUNDATIONS 

A. Scope of This Review 

This review is specialized in machine learning methods that 

protect the privacy of data related to community-wide 

infectious diseases. The major objective is to understand how 

the secure aggregation and differential privacy could provide 

the safety and legality of the analysis of the data. The review 
is grounded in the research in the machine learning, the 

public health and the data protection spheres. 

The paper will review the subject of distributed data 

collection, federated learning systems, privacy risk, and legal 

issues. It does not present novel experiments or data sets. 

Besides that, it also highlights and connects research, which 

exists. The narrative-integrative approach is the basis of the 

review. This implies that it describes the ideas of what 

something is, compares how things are done and exposes 

gaps in current knowledge. 

This is focused on the community-wide information, and not 

on single clinical studies. Data at community level plays a 
significant role in termination of outbreaks and monitoring 

the disease. Nevertheless, they present privacy threats as 

well. That is why these aspects as privacy and security are 

considered as one of the design requirements in this review. 

B. Community-Wide Infectious Disease data 

A vast number of sources have community-wide infectious 
disease data. Such entities are hospitals, clinics, laboratories, 

and public health agencies and the mobile health applications 

[8]. Part of the data is gathered on a daily basis, and at 

massive amounts. Certain ones are case numbers, test results, 

mobility patterns and symptoms reports. 

One may see the changing cases of infectious diseases in the 

global regions in January and February 2023 using Figure 1. 

The greatest number of cases is in Europe and the western 

pacific then the Americas. There are less cases reported in 

South-East Asia, Africa and the Eastern Mediterranean, but 

cases are reported. This demonstrates that infectious diseases 

affect every region except that some are not affected equally. 

The figure also shows that the number of cases is dynamic 

with time. Certain days are drastically rising and some days 

have less values. Such changes may be attributed to 

outbreaks, delays or variance in surveillance systems, or 
reporting. This fluctuation characterises a complicated and 

dynamic infectious disease data. 

Due to these variations, there is no single set of data that is 

capable of capturing all the trends of diseases all over the 

world. The information is spread across territories, 

organizations and nations. The reporting and health policy 

regulations may differ in each region. This renders 

centralized data collection problematic and dangerous. 

C. Surveillance of Infectious Diseases by Machine 

Learning 

The method of machine learning is typically used to handle 

the data connected to the infectious disease. Patterns, 

forecasting the propagation of an illness, and assisting an 

early warning system can be identified with the help of ML 

models [9]. These tools would help the authorities in public 

health to make improved and quicker decisions. 

Conventional ML systems generally make all data be located 
at a central location. This is a serious challenge which is 

centralized. The transfer of sensitive health data to a central 

server will put the data at risk of being breached and misused 

(Seh et al., 2020). It is also a source of legal problems in case 

data transfers with national or regional borders. 

To this, centralised learning is even harder because of the 

regional variation as evidenced by Figure 1. Europe, Western 

Pacific and American data are commonly gathered using 

disparate legal and technology systems. The transfer of raw 

data between regions may be in conflict with laws of data 

protection or health policies in the area. Due to this 
heterogeneity of the region, there is a need to have 

distributed approaches to learning. The federated learning 

allows model training in different places without exchanging 

raw data [11]. Individual data holders individually train the 

model and exchange model updates. In this manner, 

collaboration can be facilitated and at the same time less data 

can be exposed. 

D. Threats in Distributed Health Data privacy 

Privacy risks are even apparent in the case of federated 

learning. Health information is confidential and the 

information can still be leaked even by updating the model. 

The attackers can seek to infer confidential data by observing 

publicly available updates or model outputs [12]. In the 

literature, a number of threats to privacy models have been 

determined. These consist of inference attacks, where an 

attacker tries to find out whether the data of the person was 

used during training. The other risk is model inversion where 
sensitive information has been inverted into model 

parameters. The communication attacks may also occur 

when data is being transferred between the server and the 

client or vice versa [13]. 
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The breach of privacy may arise in a situation where local 

training, model update, server aggregation, and model 

rerelease to users occur [14]. Without the protection of these 

stages, they can reveal confidential information. Secure 

aggregation is intended to minimize the threats of model 

updates sharing. It ensures the joint updates and not 

individual contributions can be seen by the server. 

Differentiation privacy is a technique of introducing noise to 
data or model updates so as to minimise what can be known 

about any given individual [15]. It is necessary to know these 

threat models before the implementation of privacy-

preserving methodologies. Even distributed systems may 

have privacy law and ethical compliance breaches without 

express protection. 

E. The Privacy Preserving and The Legal Compliant ML 

motivation 

Since the infectious disease data currently varies at the 

global and the regional level as seen in Figure 1, there is the 

great necessity of cooperation between institutions and 

regions. Simultaneously, the issues of privacy and legal 

limitations make the scheme of sharing raw data unsafe and 

quite infeasible. The federated learning, secure aggregation 

as well as differential privacy provide a feasible resolution, 

they allow the training of distributed data without 

compromising privacy [16]. Such practices are also in line 
with legal principles like privacy by design and data 

minimization. 

This review expands on these ideas to explain why safe and 

effective infectious disease surveillance can be achieved 

through privacy preserving machine learning. The following 

sections provide a summary of secure aggregation and 

differential privacy at a more detailed level, their advantages, 

and their weaknesses, as well as unresolved gaps in research. 

III.  FEDERATED LEARNING SECURE 

AGGREGATION 

A. Meaning and Purpose of Secure Aggregation 

One of the critical methods in federated learning is secure 
aggregation that secures sensitive data in the training of 

models [16]. Data may be obtained in large numbers of 

hospitals, laboratories, and regional health systems in 

community-wide analysis of infectious diseases. These data 

contain very sensitive data like the infection status, place, 

and diagnosis time. There are a significant privacy and legal 

risk associated with sharing such data in its raw form. Secure 

aggregation can solve this issue through the participation of 

multiple parties training a machine learning model together 
without disclosing their personal data or updates. 

The federated learning has every participant locally training 

the model on its own data. Raw data is not sent to a central 

server but only model updates are distributed. Nonetheless, 

the even updates may be prone to leakage of personal 

information by inference attacks, or by inversion of the 

models [16]. Secure aggregation allows avoiding this by 

making sure that no participant is visible to the server but 

only the aggregated outcome of all updates. Consequently, 

each individual hospital or user cannot be recognized in the 

aggregate model update. 
This method is particularly valuable in systems that involve 

infectious disease monitoring in which data are spread out 

geographically and are subject to various legal regulations. 

Secure aggregation is what allows creating a common model 

worldwide and retaining local data confidential and locally 

managed. This does not compromise privacy laws or moral 

principles because it allows a massive collaboration. 

B. Secure Aggregation Workflow and Architecture 

A typical secure aggregation process in federated learning 

entails a number of synchronized elements that encompass 

the administration of keys, local calculation, encrypted 

communication, and aggregation centralization [17]. In 

Figure 2, a secure aggregation process is illustrated, 

including the generation of keys, the local model training 

process, the sharing of encrypted updates, the cloud-based 

process of aggregation, and the global model update. Such a 

workflow will be used to make sure that sensitive health 
information is never shared directly, as well as the updates 

made to individual models are hidden. 

 

Figure 2: Secure aggregation workflow with key generation and computation provider 
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Federated learning is an important technique that involves 

secure aggregation to protect sensitive information in model 

training [17]. Many hospitals, labs, and regional health 

systems are often involved in the collection of data in 

community-wide analysis of infectious diseases. This 

information presents very sensitive data that could include 

but not limited to infection status, place and time of 

diagnosis. This type of data sharing in a raw form poses 
highly privacy and legal dangers. The secure aggregation 

addresses this problem as it allows the training of a machine 

learning model within a group of participants, without 

sharing any of their data or updates. 

In federated learning, the participants are locally training the 

model with their data. Data is not transmitted to a central 

server as raw data, but rather only modifications are made in 

a model. Nonetheless, such updates can also be compromised 

by the possibility of intimate privacy breaches by inference 

attacks or model inversion methods [18]. Secure aggregation 

assists in avoiding this by making sure that the server is only 
provided with the aggregate of all the updates, but not the 

contribution by any individual participant. Consequently, the 

aggregate model update is not identifiable to the individual 

hospital/user. 

This is more essential to infectious disease surveillance, 

where the information is spread geographically and is 

incongruent with legal jurisdiction. The concept of secure 

aggregation makes it possible to build a common global 

model and maintain the privacy of local data and local 

control over it. This is useful in assisting massive 

cooperation without violating privacy regulations or moral 
principles. 

C. Aggregation Architecture and Workflow: Secure 

A typical secure aggregation process in federated learning 

consists of a number of coordinated entities, including key 

management, local computation, encrypted communication 

and centralized aggregation [17]. Figure 2 shows a safe 
aggregation algorithm, which involves key generation, local 

model training, thoughts on encrypted updates, cloud and 

global model update. The flow of work guarantees the fact 

that no sensitive health information is shared and no model 

updates are ever visible. 

To begin with, there is a key generation mechanism which is 

employed to produce cryptographic keys of the participants. 

These keys will allow every client to encrypt the local model 

update, which it will send to the server. The individual 

updates are not visible on the transmission and storage due to 

the encryption. Some systems leave control of these keys to 

one or more trusted or semi-trusted. It is not the case that the 
computation server will have access to raw updates. 

Second, the training of the model is training it locally by 

individual participants using their own infectious disease 

data. This local training step is applied to extract region 

specific patterns like local outbreak or seasonal patterns of 

disease. Once the training process has been completed, the 

local model is used in encrypting the parameters with the 

assigned keys. Privacy can be ensured at this point because 

there are no raw data and readable updates that depart the 

local device or institution. 

Third, the server receives encrypted updates of all 

participants only. It aggregates on these encrypted values 

directly producing an aggregated result, a learning 

combination of the group. Due to the encryption of the 

updates, the server is not allowed to view or isolate the 

contribution of any particular participant. Only upon 

aggregation, it is the final result that is decrypted in order to 

update the global model. 
Such a workflow is capable of facilitating learning in a broad 

area of regions, with confidentiality of the data. The figure 

assists the readers of the flow of process though the overall 

point of the figure is widely applicable in most of the secure 

aggregation protocols that are applied in healthcare research. 

D. Threat Models Privacy Protection 

Secure aggregation aims to offer some of the most prevalent 

privacy threats in federated learning systems security. The 

honest-but-curious server is one of the greatest threats, which 

adheres to the protocol, yet attempts to find information in 

the acquired updates [19]. This threat can be mitigated using 

secure aggregation, where the server does not receive the 

update of individual values, only aggregated values. 

The other threat is an inference attack whereby attackers aim 

at regaining sensitive information of model updates [20]. 

These attacks may compromise patient level information 

including their infection status or demographic details 
without protection. Secure aggregation addresses this risk by 

masking individual updates in a group sum, and hence it is 

very hard to reconstruct. 

Nonetheless, the secure aggregation is not the comprehensive 

answer. In case participants involved in a training round are 

very few, then privacy assurances can be compromised. An 

attack on dropouts where certain clients exit the system 

intentionally or accidentally may also occur [21]. These 

constraints imply that secure aggregation should be 

developed sensitively and frequently paired with other 

methods like different privacy to provide greater defense. 

E. Research Gaps, Limitations and Strengths 

Obvious benefits of community-wide infectious disease 

modeling can be gained through secure aggregation. It 

enables institutions to collaborate with each other and follow 

data ownership principles and reduce legal risk by retaining 

sensitive data locally [22]. It also increases the level of trust 
in the people, which is necessary in massive health data 

initiatives. Simultaneously, there is additional overhead in 

computation and communication on the part of the 

aggregation. Complexity of the system also includes 

encryption and management of keys that are not simple to 

the low-resource healthcare setting [23]. Scalability is the 

other problem when there are thousands of people. 

Future studies address the enhancement of the protocols, the 

more efficient working with client dropouts, and the stronger 

protection of the advanced attacks. Also, the need to make 

sure that the secure aggregation designs are consistent with 
legal and regulatory provisions increases. These gaps will be 

of significance to deploy secure and legally-compliant 

machine learning systems in the real-world public health 

settings. 
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IV.  FEDERATED LEARNING PRIVACY RISK 

Despite the use of federated learning, there are still privacy 

hazards that are faced in various phases of training. The 

Figure 3 demonstrates the workflow of federated learning 

and outlines the main aspects at which privacy violations can 
be made. This is because the first model is distributed to an 

engineer and several users, where they are trained locally 

with personal data. The trained updates are sent to a central 

point computer to be federated. The lightning icons in the 

figure represent the possible privacy risk when transferring 

data, aggregation at the server side and the exposing of the 

model to the engineers. These dangers consist of updating 

interception, model parameter inference, and reconstruction 

of sensitive user data. The figure explicitly indicates that 

privacy leakage is not completely removed by federated 

learning despite the fact that raw data are still local and this 

is why the implementation of differential privacy 
mechanisms is necessary. 

 

Figure 3: federated learning workflow

Privacy threats occur at different stages of the training 

process even in a federated learning case where such a 

learning is abused. As Figure 3 illustrates, the federated 

learning workflow presents the emphasis and highlights 
some of the locations where the privacy breaches might 

occur. The first model is transferred to a few users by an 

engineer, which trains the model locally on their own private 

data. The federated computation is performed through 

transmitting the trained updates to a central server. The 

figure has lighting indications which signify the potential 

risk of privacy, in case of data transmission, aggregation in 

the servers, and engineering access of models. Such risks are 

interception of updates, inference of model parameters, 

reconstruction of sensitive user data. It is evident in the 

figure that although raw data still remains local, federated 
learning alone does not completely avoid the leakage of 

privacy and thus warrants the adoption of differential privacy 

mechanisms. 

During the data collection step, the users/institutions train 

models and send the update to a server in their local 

environment. Assuming that these updates are not properly 

secured and sent, attackers might intercept the 

communications or the attacker may use the patterns of 

updates to interpret them. This type of attack can reveal the 

characteristics of sensitivity, including details of disease 

condition or demographics.  

This danger increases with an      abundance of updates, or 
when the number of participants is limited. 

The aggregation process itself is also a possible point of 

attack on a server level. An inquisitive server or an ill-

intentioned employee working inside can attempt to peep 

into what is going in upgrades or compare one version of the 

models to another in order to deduce confidential 

information. Sensitive information can leak out even when 
using the system by engineers who are either managing the 

system or deploying it unless the privacy is tight. 

Lastly, during the model distribution phase, the participants 

are supplied with the model updates. In case such models 

capture excessive information on individual sample data, 

attackers can execute membership inference attacks or model 

inversion attacks. Figure 3 identifies these weak spots and 

shows that federated learning is insufficient to make privacy 

threats a nonexistent problem. 

A. The way Differential Privacy Remedies These Risks: 

Differential privacy reduces such risks by limiting the 

contribution any given participant has on the final model. 

This is typically done by introducing noise to model updates 

prior to sharing or aggregating [24]. Therefore, whereas, an 

attacker can possibly access the updates or the models, the 

noise makes it very hard to obtain meaningful personal 

information. 
Differential privacy may be implemented on various levels in 

federated learning systems. Local differential privacy: noise 

is introduced at the client side and then the updates are sent 

on the device - a very strong privacy property but poor 

model performance Central differential privacy: noise is 

added after the aggregation process which tends to be much 

more accurate but needs to trust the aggregation server. The 

systems will be able to receive a layered protection by 
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integrating differential privacy and secure aggregation 

systems. Secure aggregation closely conceals the individual 

update and differential privacy does not allow any 

information to leak out even of the aggregated output. When 

combined, they provide more protection against external 

aggressors and internal threats. 

B. Privacy-Accuracy Trade-offs and Practice: 

One of the biggest issues of differential privacy is the 

privacy versus performance trade-off on the model. More 

aggressive privacy guarantees require additional noise, and 

this might lead to inaccurate model. The problem of low 

accuracy may affect the detection of outbreaks or resource 

plans in the infectious disease prediction, and thus, the 
tradeoff is significant. A careful choice of the privacy 

parameters must be made by researchers in order to attain the 

balance between protection and utility. Practically, this 

balance is founded on the practicality, sensitivity of the 

information and the degree of risk which can be taken. Small 

or highly imbalanced datasets can be more expensive to 

performance loss as well as large datasets can be relatively 

more noise-tolerant. 

The difficulty of the systems is another challenge. 

Differential privacy must be implemented with a bit of care 

and professional skills [25]. Systems that are not properly 

configured can give an illusion of security or even breach 
privacy assurances. These issues highlight the significance of 

uniformity in guidelines and tools to use in the application of 

the differential privacy in the field of health. 

C. Compliance to Law and Research Gaps: 

Different privacy is significant towards meeting the legal and 
ethical demands of handling health information. A 

significant number of the data protection laws are aimed at 

minimizing data, anonymizing and risk reduction. 

Differential privacy directly promotes such principles by 

restricting the levels of exposure of the individual-level. 

Although it has been strong, it has a number of research 

gaps. Further development is needed to obtain higher 

precision in the strict privacy budgets (especially detection of 

rare diseases). Little is also known concerning the manner in 

which privacy parameters that are legal can be selected. The 

adaptive privacy mechanism and improving the linkage 

between technical and regulatory complies should be a 
research topic in the future. 

V.  LEGAL AND ETHICAL COMPLIANCE 

A major problem that can be raised in connection with the 

machine learning context is legal and ethical compliance that 

can be achieved when working with sensitive health or 

personal data [26]. A combination of federated learning with 

secure aggregation and differential privacy provides a 

feasible means of reducing risks associated with the failure 

to comply with privacy regulations including the General 
Data Protection Regulation (GDPR) in Europe, or the Health 

Insurance Portability and Accountability Act (HIPAA) in the 

United States [27]. It is possible to note that during the 

training of a model, the user data are stored on the local 

devices as indicated by the conceptual workflow in Figure 2 

and Figure 3. Model updates as opposed to raw data are only 

shared with a central server. Secure aggregation ensures that, 

such updates are aggregated in a manner that the server or 

any external viewer would not be able to get access to the 

individual contributions. This process is directly connected 

with the idea of minimizing the data, which is one of the 

most important values of GDPR, as personal information is 

never revealed or concentrated at all. Differential privacy 
provides an additional level of compliance ensuring that 

compliance occurs by introducing noise on the model 

updates, which makes it mathematically challenging to learn 

anything about any individual [28]. These techniques 

combined reflect the principle of privacy-by-design, which 

proposes privacy protection to be implemented at the system 

architecture level, as opposed to being applied as an 

afterthought. Another way of promoting compliance is by 

adopting access controls and auditing systems and by making 

sure that only authorized individuals can work with model 

updates or aggregated outcomes. Through a federated 
learning method combined with secure aggregation and 

differential privacy, organizations will be able to 

demonstrate that they have made optimal efforts to make 

sure that sensitive information is secured, restricted, and 

compliant with the legal and ethical provisions of the major 

privacy frameworks. This combined effort reduces the 

possibility of incurring regulatory infractions, assists in 

ensuring that the operations are congruent with ethics so that 

gathering, storing and processing of valuable health data is 

carried out in a responsible manner. The conceptualized 

workflow shown in Figure 2 and Figure 3 shows the various 
levels of protection such that the data is stored locally, the 

communication is encrypted and the aggregation and 

redistribution would not be designed in a way to leak out. By 

doing so, the framework will be technically well-grounded 

and legally and ethically well-grounded, which will offer a 

practical plan of how secure and compliant machine learning 

can be in healthcare applications, in the real world. 

VI.  INTEGRATED FRAMEWORK 

In order to establish privacy protection and still be legal, a 

combined system consisting of federated learning and secure 
aggregation and differential privacy can be implemented. 

The conceptualization of Figure 2 and Figure 4 explain how 

decentralized sources of data can be used to train a model 

without concentrating on sensitive information. The storage 

of raw data in this framework is done on the local device of 

each user and the computations are done locally. The updates 

are then transferred safely with the help of aggregation 

protocols, which do not permit the central server of knowing 

the individual contributions. The aggregated updates are 

done using differential privacy, as a form of additional 

obfuscation of the possibility of a leak of private data. The 
integrated process may be considered a layered architecture 

at the bottom, there are distributed data sources, which are 

inputs to the federated learning system with secure 

aggregation. The middle tier employs the concept of 

differential privacy on the aggregated model in such a way 

that the input of each participant in the data is 

mathematically safeguarded. Lastly, a layer of law-abiding 
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presents a top-down method to the computation workflow 

and guarantees such ideas as privacy-by-design, data 

minimization, and adherence to regulations. With this 

architecture, the results of the model can be distributed to the 

researchers or decision-makers without compromising 

individual privacy. The framework also allows the ongoing 

learning and change as updates are made in a piece-meal 

manner and privacy-sensitive, which is highly important in 
areas like the medical field where data continuously change. 

In principle, then, this architecture means that the technical, 

legal and ethical concerns are closely fixed together. The 

distributed computation eliminates the threat of centralized 

attacks, an aggregation that defends against unauthorized 

access and during and the communication, and differential 

privacy eliminates the threat of inference attacks on the 

model itself. Law observance is enhanced through the 

paperwork of all the processes and evidence of the system in 

compliance to the norms of GDPR, HIPAA or other legal 

acts. This cumulative system provides a comprehensive 

privacy-conscious machine learning system: it enables joint 

model training, reduces exposure to sensitive data, and does 

not violate ethical and legal standards. The diagram below 

was used as a visual representation towards reinforcing the 
idea of each layer playing a role in ensuring privacy 

protection as well as regulatory compliance besides offering 

a clear and workable blueprint of what is needed to be 

implemented in the application of the concept in real-life 

application. When integrated within one system, 

organizations will be able to make sure that machine learning 

models are efficiently, securely, and responsibly trained

.  

Figure 4:  Integrated Workflow Diagram 

VII.  OPEN CHALLENGES & FUTURE 

DIRECTIONS 

Federated learning (FL) is a new approach towards utilizing 

the information provided by different users without access to 

the raw data. Still, according to Figure 2 and Figure 3, there 

are still several privacy risks. Attackers can intercept or 

analyse updates sent by users to the server. It can be the 

server itself which can be attacked. The updated model can 

give sensitive information even during aggregation, 

depending on how weak the protection is. These weaknesses 

limit the use of FL to the real-life health applications. 

Lightweight differential privacy (DP) is one of them. A 

significant number of customers use FL with their mobile 

devices. Mobiles have low calculating capabilities [29]. The 
existing DP techniques are bulky and slow and this reduces 

the rate of training. Studies are required to come up with DP 

that can effectively operate in mobile devices but safeguard 

privacy. 

Attack resistant aggregation is another problem. Aggregation 

in this case (see Figure 2) takes place at the server. Assuming 

that attackers control part of the users or execute 

manipulative updates, they can cause bias on the end model. 

Attacks should be detected and prevented by new 

aggregation techniques; the model should be kept reliable 

and secure. 
Also, a major goal is real-time outbreak detection. Figure 1 

demonstrates that there is a great region-specific variation of 

infectious diseases. It is in dire need of the data collection 

and process in time to respond to outbreaks. The federated 

learning must be able to update faster and give early 

warnings, without violating privacy. 

Other research directions include combining the idea of 

federated learning and secure computation, or combining 

adaptable machine learning models to the differences in the 
disease prevalence between regions. Confidentiality laws 

like GDPR also imply that one has to be careful when 

dealing with health information. More confidence will be 

developed in FL systems through the use of methods that 

comply with legal requirements and are effective. To 

conclude, Figure 2 and Figure 3 indicate that privacy 

violation and attacks may occur at various levels. The future 

studies should address these weak points and rectify them, 

and enhance efficiency of mobile and cloud systems, and 

generate dependable insights and real time to public health. 

VIII. CONCLUSION 

As presented in this review, on-hand infectious disease 

statistics, such as Figure 1, indicate the necessity to conduct 

massive health surveillance. The effects of the disease 

transmission of covid-19, dengue, and other infectious 

diseases vary in various regions. A collection of data in 

communities is an essential procedure but has privacy risks. 

Federated learning is a model training methodology that does 

not involve the exchange of the raw data. Figure 2 and 
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Figure 3 demonstrate the functioning of FL and the points of 

privacy risks. Aggregation is safely made to ensure that 

separate updates are safely put together. Differential privacy 

limits the contribution made by each user and limits 

inference attacks. The combination of the techniques allows 

securing technical and legal standards to manage sensitive 

health information. 

The gaps and challenges are also determined in the review. 
The mobile applications need lightweight different privacy. 

Methods of aggregation must also withstand attacks and 

systems must have the ability to identify the outbreaks in real 

time. FL also needs to respond to variations in the prevalence 

of diseases across regions as indicated in Figure 1. To sum 

up, privacy-preserving machine learning is significant to the 

public health use. Figure 1, Figure 2, Figure 3 provide us 

with a reasonable notion of the actual world motivation, 

workflow of federated learning and potential privacy threats. 

The combination of both secure aggregation and differential 

privacy addresses the majority of these issues. The future 
research area would be to increase efficiency, privacy versus 

attacks, and patterns of disease in the region. This will enable 

effective, quick and secure monitoring of the population 

health to enable community to react to the threat of 

infectious diseases without compromising privacy. 
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