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ABSTRACT- SLR has evolved as one of the most
important areas in human—computer interaction and
assistive communication technologies. With the rapid
development of deep learning, SLR systems have evolved
from traditional handcrafted features to highly efficient
data-driven models capable of grasping complex spatial
and temporal patterns in sign sequences. A wide variety of
recent works have investigated different approaches that
range from CNNs and recurrent architectures to GCNs for
skeletal modelling and state-of-the-art transformer
frameworks for long-range sequence understanding.
Besides, multimodal systems that incorporate RGB, depth,
skeletal information, and radio-frequency signals
demonstrate enhanced robustness under difficult real-
world conditions. This survey provides an in-depth review
of modern advances in SLR by underlining
methodological novelties, commonly used datasets,
architectural enhancements, and corresponding
performance results. Shared challenges regarding signer
variability, limited diversity in datasets, occlusions, and
constraints on real-time processing are discussed in detail.
The survey concludes by underlining emerging trends and
future research directions oriented to the development of
scalable, accurate, and context-aware SLR systems that
can be effectively used in practical assistive applications.

KEYWORDS- Sign Language Recognition, Deep
Learning, CNN, GCN, Transformers, Pose Estimation,
Multimodal Fusion, Continuous SLR, Word-Level SLR,
Human—Computer Interaction.

I. INTRODUCTION

Sign languages are developed, natural languages that are
entirely visual. They are extensively utilized within Deaf
communities internationally. Deaf sign languages employ
sensory channels simultaneously. These encompass hand
configuration, motion, direction, placement and facial
gestures. The primary cause that conventional automatic
speech recognition systems cannot be modified for sign
languages is the absence of signals, in sign languages. The
goal of the Automatic Sign Language Recognition System
is to decode these cues and convert them into spoken or
written words [1] [2] [3] [4] [5] [6].

Advancements in computer vision and deep learning have
swiftly transformed the landscape of SLR research.
Convolutional Neural Networks excel at extracting

features from images effectively identifying hand
configurations and movements facial expressions and
subtle articulations that are challenging to model with
manually designed features [7] [8]. Recurrent Neural
Networks, particularly LSTM and GRU variants have
proven effective in modeling the progression of sign
production and detecting minute temporal variations
essential, for recognizing dynamic gestures and sign
sequences. [9], [10].Additionally techniques based on
graph and pose representations have become a focus of
investigation. Graph Convolutional Networks (GCNSs)
which operate directly on graph structures derived from
joints efficiently manage the temporal dynamics of
gestures along with background interference and variation
[11] [12]. Transformer networks have advanced SLR and
sign language translation by utilizing self-attention to
accurately model long-range dependencies, in inter-
channel gestures and coarticulation [13] [14], [15].

In spite of these improvements several obstacles continue
to impede the effectiveness of SLR systems. These
obstacles encompass variability and domain transfer/shift
involving aspects like physiology, sign style, speed of
movement, perspective, attire and recording conditions
among elements. [16] Ongoing SLR learning poses a
greater difficulty because natural sign languages lack
distinct boundaries due, to coarticulation movement
epenthesis and transitional gestures. [17] [18] [19].

An additional difficulty in this area is the availability of
annotated data particularly, for less resourced sign
languages. Creating a quality sign language dataset
demands knowledge for part annotations and multi-
channel synchronization, which results in high costs and
slow data collection. Consequently, certain sign languages
lack datasets for the efficient training of deep learning
models [20][21][22][23][24]. Additionally, elements like
blocked hands, rapid movement, background distractions
and poor lighting complicate recognition efforts because
of environments [25]. Lastly challenges persist for SLR in
video scenarios due, to the processing power needed for
advanced neural models. Transformer networks, high-
resolution video encoders, and multi- stream fusion
architectures are quite resource-intensive and therefore
can't be deployed on mobile and embedded platforms for
assistive usage scenarios [26], [27], [28]. Therefore,
efficient and low-latency architectures for SLR are being
researched.
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Il. LITERATURE SURVEY

The research on SLR has grown quickly in the last ten
years because of the recent advancements in deep learning
and increased demand for inclusive communication
systems in society. Most earlier attempts at SLR were
based on handcrafted features that were highly susceptible
to environmental changes and signer variations. With the
arrival of deep learning, much more robust approaches
emerged that are capable of automatically extracting
spatial-temporal patterns, improving gesture
segmentation, and increasing the overall recognition
accuracy. Multiple architectural paradigms have since
been investigated by researchers, including convolutional
neural networks, recurrent sequence models, graph-based
skeletal learning, and transformer frameworks.

This literature review consolidates major contributions
across these domains, putting in perspective their
methodological  novelties, benchmark performance,
datasets, and application constraints. The survey will
present an overview of how SLR models have evolved, the
strengths and limitations of existing techniques, and also
the trends that will guide future research by reviewing key
works covering isolated, word-level, and continuous
signing. The aim of this section is to provide a structured
understanding of how SLR solutions have progressively
evolved toward more accurate, generalizable, and context-
aware recognition systems capable of operating within real
assistive environments.

A. CNN-Based Approaches

Early works on SLR with deep learning mainly relied on
‘Appearance-based Methods' and were based on 2D and
3D Convolutional Neural Networks (CNNs), incorporating
spatial and short-term spatiotemporal information for
feature extraction from RGB videos [7], [8], [29], [30],
[31], [32], [33], [34]. These methods allow automatic
learning of hierarchical visual representation based on

Multi-stream Decomposition (Divide)

handshape configuration, local movement, and upper body
pose without requiring any hand-crafted features. 2D
CNNs concentrate on spatial pattern recognition at the
frame level, and 3D CNNs improve upon it with
simultaneous consideration of motion information on a
frame-by-frame basis. To improve discriminative abilities,
multi-stream CNN architectures were formulated with
dedicated branches for regions of interest like hands, face,
and upper body, eventually combining these streams'
outputs with a common prediction task [8], [30]. The
structured  knowledge of sign languages allows
simultaneous focus on detailed articulation based on hands
and additional non-manual information based on facial
expressions and upper body configuration.
Appearance-based CNNs show excellent performance on
isolated sign languages recognition, as they receive an
input clip with a single sign and well-defined temporal
bounds and with limited co-articulation. CNNS'
capabilities on local spatial and short-term temporal
information might be adequate for classification in these
conditions. Nevertheless, these methods have limitations
when confronted with more realistic challenges.
Variational factors on illumination, viewpoint, and signer's
personal appearances might affect the extraction of spatial
features. Moreover, with no explicit modeling outside
short-term temporal windows, these methods' capabilities
might be limited on continuous sign languages.
Consequently, these challenges made subsequent
investigations incorporate pose-based models, recurrent
models, and transformers.

Figure 1: A typical CNN-based framework for sign
language recognition is depicted below, showcasing the
parallel CNN branches that the model uses to handle the
visual/sensory inputs, along with the merging of the
features and classification layers, representing the spatial
as well as the short spatiotemporal properties that are
captured using CNNs for isolated sign recognition.
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Figure 1: CNN-based multi-stream SEMG feature extraction and fusion architecture for gesture recognition.
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B. RNN/BiLSTM-Based Methods

In SLR, especially, the role of sequence modeling is of
great importance, as it allows the learning of long-term
temporal dependencies beyond the short-range patterns
captured by the CNN. This is done in a similar way to the
strategy of combining CNN-based feature extractors with
recurrent architectures, such as LSTMs and GRUSs, to
enable the tracking of motion trajectories and evolving
articulations across extended sign sequences [9], [17],
[35], [36], [37], [38], [39]. Hybrid CNN-RNN models are
thus particularly effective under continuous recognition
scenarios, in which signs unfold over time with variable
duration and transitional movements. The maintenance of
memory states that encode past visual information helps
recurrent networks tell apart signs with similar visual
appearances but distinct temporal signatures, which
improves recognition accuracy and robustness against
intra-signer variability.

In contrast to recurrent architectures, TCNs have become
increasingly popular in modeling sequential dynamics
through hierarchical stacks of dilated convolutions. As a
simple, yet powerful architecture, TCNs exhibit
advantages in parallelized computation, stable gradients,
and flexible receptive fields that can grow exponentially
with network depth. By being incorporated into CTC or
encoder-decoder frameworks, TCN-based models are able
to learn alignment between input video frames and

~

corresponding gloss sequences with no explicit boundary
annotations. A competing alternative to RNN-based
sequence models in state-of-the-art SLR, TCNs can jointly
model temporal structure and alignment in an end-to-end
and computationally-efficient manner.

C. GCN-Based Skeletal Approach

The recent developments in pose estimation tools like
OpenPose and MediaPipe have led researchers working on
SLR focus on pose-based methods. The method uses
structured coordinates representing joint locations instead
of working with raw pixel intensities. By identifying
2D/3D key points representing hands, arms, and upper
body regions, SLR methods based on pose estimation
make recognition less dependent on factors like clothing
and background complexity. It becomes feasible for the
recognition system to concentrate on sign dynamics and
articulation because working with skeletons significantly
reduces dimensions compared to processing the entire
frame size of an input image. As a result, pose estimation
methods can be very efficient.

Figure 2 shows a pose-based transformer architecture for
the prediction of sign language glosses. In this image, the
use of skeletal key points derived from video frames,
represented by attention mechanisms that focus on spatial-
temporal relationships, emphasizes the insensitivity of
skeletal learning to backgrounds and light conditions.
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Figure 2: Pose-based transformer architecture for sign language gloss prediction from video.

Graph Convolutional Networks (GCNs), nowadays, have
been recognized as the preeminent representation
technique for modeling skeletal data within SLR. By
representing joints as graph vertices with anatomical graph
edges connecting them, GCNs seamlessly encode spatial
and temporal information within consecutive frames as a
result of anatomical knowledge [10], [40], [41], [42], [43],

[44]. GCNs learn attributions of joints representing
difference among poses with comparable global movement
but divergent hand trajectory and fingeraghan
configuration. Moreover, GCNs seamlessly address
challenges associated with noise and missing joints, who
commonly constitute limitations within pose estimation
methods, making them apt tools for uncontrolled settings.
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Because of their resilience against illumination changes,
background presence, and motion caused by cameras,
pose-based GCN methods have been recognized as an
efficient alternative solution compared with conventional
appearances for SLR.

D. Transformer-Based Models

Transformers have increasingly emerged as a cornerstone
for state-of-the-art SLR research because they have shown
efficacy at modeling global and distant dependencies
without incorporating recurrent computations. Based on
these benefits obtained with self-attention mechanisms,
more global modeling and understanding of complex sign
language sequences have been achieved without
limitations on distant frames [11], [12], [45], [46], [47],
[48]. Variations based on Vision Transformers, video
transformers, and CNN-Transformer architectures have
shown improvements with global understanding abilities
via inclusion of spatial knowledge and motion-aware
attributes. These architectures have maintained state-of-
the-art performance on various SLR benchmark datasets
due to their merits pertaining to malleability, extendibility,
and efficient combination of multi-channel sources like
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The main advantage that attention-based models have can
be attributed to their capability to focus selectively on the
most informative aspects of a signing sequence. It
becomes possible with self-attention that allows it to focus
selectively on important frames, paths, and articulations,
as well as grammatical and semantic aspects, on one hand.
At the same time, it captures equally well non-manual
signals, like facial expressions and head movements,
which assume equal importance on the grammatical and
semantic  understanding of sign languages. The
coarticulation, ambiguous boundaries, and overlap signals
are remarkably well processed with transformer
architectures, and thus they form a strong foundation for
next-generation SLR systems.

Figure 3 describes the internal functioning of the
Transformer architecture. The overall architecture
description of the encoder and decoder using multi-head
attention along with the feed-forward layer is presented in
Figure 3 (A), whereas Figure 3 (B) represents the
scaleddot product attention layer that captures the
interaction among the query, key, and value vectors.
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Figure 3: (A) Encoder—decoder structure of the Transformer with multi-head attention, feed-forward layers, and positional
encoding. (B) Scaled dot-product attention mechanism illustrating the interaction between query, key, and value vectors.

E. Approaches Based on Fusion and Multimodality

Traditional Single-Modality SLR methods have been
remedied with an innovative perspective brought about
through Multimodal SLR methods. These models have
incorporated  multiple  sources of complementary
information, ranging from traditional sources like RGB
images, Depth images, Optical flow images, and Key
points images, and have gone a step ahead and

incorporated Information from IMU. All these sources
provide information about different aspects of sign
interpretation. While RGB images provide information
about the rich attributes of signing, Depth images form 3D
structure and resolve ambiguities associated with
overlapping limbs. Optical flow images depict motion
attributes, Key points convey joint articulation
information, and IMU signals are associated with
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orientation and acceleration.

Efficient fusion techniques are critical for effectively
utilizing multimodal inputs. Some research papers have
explored fusion at the input level, feature level, and
decision level. The input level fusion technique stacks raw
modality features for simultaneous modeling; feature level
fusion involves aggregating feature extraction from
separate branches at the modality level. Decision level
fusion integrates predictions from multiple classifiers.
Through various architectures such as CNNs, RNNs,
GCNs, and transformers, it has been made amply clear that

fusion can significantly improve recognition accuracy and
make an SLR system more resilient and apt for real-world
deployments [13], [49], [50].

Figure 4 represents the structural design of a pose-based
representation system for signs. Figure 4 (a) indicates
spatial junction grouping, Figure 4 (b) represents hand-
centered refinement layers, and Figure 4 (c) represents
spatiotemporal skeleton graph building, again emphasizing
multimodal fusion benefits in increasing robustness of sign
detection performance.

Figure 4:(a) Spatial joint grouping, (b) hierarchical hand-focused refinement, and (c) spatiotemporal skeleton graph
construction used for pose-based sign representation.

F. Datasets Used in Literature

Large, annotated datasets have been a driving force behind
these advances in SLR, offering the scale and variety that
modern deep-learning models require. Core resources
include RWTH-PHOENIX-Weather and its extension
PHOENIX-2014T, central benchmarks for continuous
German Sign Language and drivers of recent advances in
both sequence modeling and translation tasks [2]. For
American Sign Language, MS-ASL introduced a large-
scale dataset with thousands of classes, facilitating
research into high-vocabulary recognition and generalized
representation learning [3]. Similarly, WLASL contributed
a diverse, multi-signer dataset in the area of isolated sign
recognition, displaying rich signer variability in terms of
appearance, speed, and articulation patterns [4]. In
addition to these larger corpora, an emerging set of
regional datasets has expanded linguistic coverage for
Chinese, Indian, Turkish, Spanish, and Arabic sign
languages, reducing dependence on  resource-rich
languages and thus helping to support fairness and cross-
linguistic generalization [5], [20], [21], [22], [23], [24].

These datasets indicate a shift from early, small-scale
laboratory collections to realistic, in-the-wild benchmarks.
Indeed, modern SLR corpora increasingly include natural
variations of lighting, cluttered or dynamic backgrounds,
signer diversity, and unconstrained camera arrangements.
It is such ingredients that provide real-world signing
conditions, promoting models robust beyond the carefully

created, laboratory-controlled environment. It follows that
very large, linguistically diverse datasets have become
crucial for benchmarking of SLR architectures and driving
advances in the direction of continuous recognition,
translation, and multimodal fusion.

Major datasets referred to throughout SLR studies include
in the below table 1:

Table 1: Comparison of benchmark sign language datasets
based upon language, task type, size, and input modality

Dataset Language Type Size Modality
WLASL ASL | Word-level | 21K RGB
videos
25k
MS-ASL ASL Word-level videos RGB
Phoenix German .
2014T SL Continuous 9h RGB
ASLLVD ASL Isolated 33'3k RGB
signs
INCLUDE Indian SL Isolated Medium RGB
HowToSign ASL Continuous | Large RFEZ E;

G. Gaps in Literature Summary

SLT can be viewed as an extension with considerably
greater ambitions than traditional SLR because it aims at
translating entire sign videos directly into spoken
sentences. Contemporary SLT models usually employ
encoder-decoder frameworks with attention modules and
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transformers designed to focus on capturing intricate
spatiotemporal relationships among sign sequences of
arbitrary lengths [18],[19],[46]. While the encoder might
be composed of CNNs, RNNs, GCNs, or even
transformers that focus on encoding a high-level
representation of sign videos based on the visual inputs,
the role of the decoder would be producing grammatically
correct spoken sentences.

Despite these advances, SLT still proves to be a very hard
task because of some intrinsic properties that exist due to
the difference in structure between sign languages and
spoken languages. The sign languages incorporate very
intricate spatial grammars, classifiers, role-shifting, and
simultaneous manually and non-manually tracked
gestures, making it very hard to map these into the linear
word structure of spoken languages. Variations in facial
expressions, head movement, and signing space are
meaningful and should be carefully incorporated into the
translation task by the learning model. Despite these
difficulties, advances made in alignment learning,
attentions, and large multilingual corpora have made it
easier and more efficient. Recent works based on
transformers have made very encouraging breakthroughs,
indicating that advances made in learning multimodal
representations will narrow the gap between visual-
communicative and natural languages.

I11. PROPOSED METHODOLOGY

This survey follows a structured and transparent
methodological framework to make the review of existing
SLR research systematic, comprehensive, and unbiased.
The goal is to provide a comprehensive overview of
modern deep-learning methods, performance, and future
research trajectories. To accomplish this, the methodology
will follow several key stages, including the identification
of literature selection criteria, categorization strategies,
comparative evaluation, and analytical synthesis.

A. Research Framework

The proposed methodology follows a structured research
framework that is better suited to clearly and
systematically present the evolution in the SLR domain.
The survey covers only those studies addressing deep-
learning-based architectures, including CNN, RNN, GCN,
transformer, and more recently, multimodal systems.
Studies have been collected from valid scientific sources
and subsequently filtered for their contribution to
automatic sign interpretation, experimentations based on
approved datasets, and architectural novelty. By narrowing
the scope to methods developed around deep learning and
widely referenced datasets of sign languages, the
framework ensures that only impactful contributions
relevant to the technical aspects are evaluated. The final
set of research works reflects the chronological evolution
of SLR methods from early vision-based models to
transformer-driven and multimodal fusion frameworks.

B. Criteria of Categorization

After gathering the relevant literature, the studies were
categorized on consistent parameters to facilitate
comparative understanding. Each work was first classified
according to the learning model employed, thus allowing
clear separation between CNN, GCN, Transformer, and

hybrid architectures. Further categorization was done
based on the type of modality used in the input stream,
including RGB frames, pose-based skeletal data, depth
images, optical flow, and RF signal-based sensing. The
task domain further helped in categorizing the methods
developed for either isolated gestures, word-level
recognition, or continuous signing. The approach to
temporal modeling was also noted, whether achieved
through recurrent units, temporal convolutions, attention
mechanisms, or cross-modal fusion. These are the
categorization criteria that ensure works of similar intent,
computational design, and learning philosophy are
analyzed against each other for a more meaningful and
uniform comparison.

C. Performance Appraisal

Performance appraisal constitutes the core analytical stage
of the proposed methodology. Each selected work is
assessed against the reported results about benchmark
datasets, model training strategies, and accuracy-related
indicators. This assessment largely highlights general
recognition accuracy, Top-k correctness, and quality in
temporal alignment, while also considering Word Error
Rate in continuous sign prediction or sequence-to-text
translation metrics such as BLEU or ROUGE scores.
Practical aspects, like model inference speed, stability
under complex backgrounds, or robustness related to
lighting variations and signer-specific differences, are also
explored to gain insight into the readiness of these systems
for real-world deployment. Due to this standard uniformity
in evaluation, the appraisal lucidly provides insight into
how various architectures perform under changing data
conditions, input modalities, and application constraints.

D. Discussion and Key Findings

The methodology closes with a structured discussion
synthesizing research outcomes, underlining notable trends
in performance, and pointing out recurrent limitations. The
comparison study shows that transformer-based systems
are the most promising on large-scale datasets due to their
strong temporal encoding capabilities, while GCN-based
skeletal models maintain stability under conditions of low
visibility and cluttered scenes. Multimodal fusion shows
consistently better robustness, reducing signer-dependency
by including pose, depth, and RF-sensor streams in
addition to RGB imagery. Observed patterns emphasize
maturity and diversification but also point to challenges
concerning dataset scarcity, signer variability, continuous
signing segmentation, and real-time deployment burdens.
These findings help outline the direction for future
research by emphasizing larger multilingual corpora, light-
weight models efficiently optimized for on-device
inference, and learning strategies for multimodal data that
generalize across environments and signers.

IV. RESULTS

Aggregated findings from reviewed research indicate a
number of consistent trends.

A. Performance Trends

Studies prove:
e Transformer architectures achieve the highest accuracy
in large-vocabulary datasets.
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GCN models work stably when the visual features are
unreliable.

Multimodal fusion provides accuracy 5-15% higher
than single-input models.

Influence of Dataset

Transformer-based models: 90-96%
Multimodal approaches: up to 98% for isolated SLR

. Major Insights

Transformers are the state-of-the-art currently.

Large datasets like WLASL, MS-ASL, and Phoenix- Multimodal systems provide the best overall

2014T result in remarkable increases in generalization. robustness. _
Smaller regional datasets have lower performances y Ske_::_eton-based models enhance environmental
resilience.

resulting from limited vocabulary and signer diversity. 4 o ] ]
o Dataset size and diversity considerably impact the

model's performance.
Real-time performance remains difficult with high-
complexity models.

C. Accuracy Summary
Typical ranges found in literature: .

e CNN-based methods: 70-90%
e GCN-based models: 80-92%
Comparison of Translation Models for English to PSL
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Figure 5: Comparison of transformer and RNN

perceiving temporal relationships, thereby increasing
accuracy during sign language recognition.

Figure 5 is a comparative graph between transformer
models and RNN models. The graph shows the
capabilities of transformers over RNN models in
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Figure 6: Performance metrics analysis of machine learning techniques with probabilistic features.

both effectiveness and accuracy of recognition, thus
validating the observations made in this section.

In the above Figure 6 shows the performance metrics using
probabilistic features for various methods of machine
learning. This graph allows for a quantitative analysis of
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V. CONCLUSION

This survey presents an in-depth analysis of major
developments in deep-learning-based Sign Language
Recognition across various architectures, modalities, and
datasets. Recent developments, like transformers and
multimodal learning, have substantially increased the
accuracy, robustness, and scalability of recognition. Yet,
limitations remain, including the limited diversity of
datasets, the high inter-signer variability, continuous sign
segmentation, and real-time inference with computational
demands.

Future work is thus needed in large multilingual data
creation, lightweight models for edge deployment, self-
supervised and foundation-model learning, signer
independence, and integration of techniques for improving
real-world applicability through multimodal fusion. With
each step, the progress continues to point toward the fact
that SLR systems have tremendous potential for
transformation into accessibility and communication
technologies.
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