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ABSTRACT- The performance of many deep learning 

models for the classification of multi-class plant diseases is 

examined in this study.  Accurate and effective solutions are 

necessary because plant disease identification is crucial to 

agricultural productivity.  Publicly accessible datasets of 

plant disease images are used to assess deep learning 
models, especially convolutional neural networks (CNNs), 

and transfer learning architectures such as ResNet and 

VGGNet.  These models are compared in the study 

according to their generalizability, accuracy, and 

computing efficiency.  The results are intended to shed light 

on the best deep learning methods for managing and 

detecting plant diseases in the real world. 

KEYWORD: Machine Learning, Deep learning, CNNs, 

Artificial Intelligence, ResNet, VGGNet,  Plant Diseases 
Detection 

I.  INTRODUCTION 

Plant diseases pose a serious risk to food security and cause 

large financial losses in global agriculture.  To reduce these 

effects, plant diseases must be accurately classified and 

detected early.  Agricultural specialists have always used 

hand inspection to identify plant diseases.  However, this 

method is not scalable for large-scale agriculture and is 

labor-intensive and prone to mistakes.  Therefore, using 
machine learning—more especially, deep learning 

techniques—to automate the identification of plant diseases 

is becoming more and more popular[1]. 

Medical image analysis or object detection are among the 

tasks that deep learning, which is a branch of artificial 

intelligence (AI), does exceptionally well[2]. An example 

of a deep learning architecture is Convolutional Neural 

Networks (CNNs). CNNs are proficient in plant disease 

image classification because they feature automated 

relevant image parts extraction processes, which make 

manual feature engineering unnecessary[3]. Furthermore, 

classification performance within such constraints 
improves due to transfer learning, a process of adjusting 

pre-trained models on new datasets, and limited access to 

data bearing labels. An unreliable pesticide control 

approach can enable chronic pathogens to evolve in a way 

that diminishes the capability to deal with them. Prompt and 

precise diagnosis of plant diseases is one of the aspects of 

precision farming that requires an exact interpretation[4]. 

Since it detects disease symptoms early and eliminates a 

significant amount of monitoring work in large agricultural 

farms, plant disease detection via an automated technique is 

beneficial.  Image segmentation methods can be applied to 

automatically identify and categorize plant diseases through 
the use of deep learning algorithms.   

II.  MACHINE LEARNING AND DEEP 

LEARNING APPROACHES FOR PLANT 

DISEASE CLASSIFICATION 

A.  Traditional Machine Learning Algorithms:  

 Support Vector Machines (SVMs): SVMs are widely 

used in binary and multiclass classification tasks, and 

they are also used in the identification of plant diseases.  

Using the collected attributes, SVMs effectively classify 

plant disease categories[5]. 

 Random Forest: Random Forest is an effective 

ensemble learning technique for categorization issues.  

It is well-known for its exceptional accuracy and 

adaptability in handling a wide range of traits[6].  

B. Feature Extraction and Selection:  

 Color-based Features: As a plant ages, its appearance 

changes, and characteristics based on color information, 

like color moments or color histograms, are frequently 

used to illustrate this variety.  Techniques like as Gabor 

filters[7] or Local Binary Patterns (LBP)[8] may be able 

to forecast its development. 

 Shape Features: Factors related to the leaf and stem 

morphology, such as contour-based features, may help 

distinguish between plant stages. 

C. Convolutional Neural Networks (CNNs):  

 CNNs have been frequently utilized for plant disease 

classification because they can automatically learn 

hierarchical properties directly from raw images[9]. 
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 Among a CNN's numerous layers, convolutional layers 

extract features, pooling levels do down sampling, and 

fully connected layers are employed for classification.  

D. Transfer Learning 

 Pre-trained deep learning models like VGG16, VGG19, 

ResNet, InceptionNet, etc. can be adapted to categorize 

different stages of plant diseases[10], [11]. 

 By reusing characteristics learned from a large dataset 

(such as ImageNet), transfer learning speeds up training 

and usually improves classification performance even 

with less training data. 

E. Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM)  

RNNs and LSTM networks are helpful tools for instances 

of sequential or time-series data related to fruit 

development, such as color or texture changes over 

time[12], [13]. 

F. Data Augmentation  

Common data augmentation methods include rotating, 

resizing, and brightening photos to enhance model 

generalization and diversify the training sample. 

Manually gathering data, coping with bad weather, 

applying pesticides to illnesses, and other tasks that 
endanger farmers' lives are all part of traditional agricultural 

methods, particularly in regions that are prone to drought.  

Predicted data in farming has been desperately needed in 

light of the current state of conventional farming in order to 

help farmers recognize and address issues in real time.   

Several decades have passed since machine learning was 

first applied to the identification of plant diseases, with 

early attempts concentrating on more straightforward 

methods like decision trees, support vector machines 

(SVM), and k-nearest neighbors (KNN).  These techniques' 

efficacy and scalability were constrained by the need for 
manually created characteristics from plant photos.  The 

area was completely transformed in the early 2010s with the 

advent of deep learning, specifically Convolutional Neural 

Networks (CNNs).  CNNs remove the need for human 

feature extraction by automatically learning hierarchical 

features from raw picture data.  Significant advancements 

in picture classification tasks, such as the diagnosis of plant 

diseases, resulted from this development.  Large annotated 

datasets, such as the PlantVillage dataset, allowed deep 

learning models to be trained on a range of plant species and 

diseases, boosting research in this field. 

With more advanced deep learning models, plant disease 
classification has evolved. ResNet, VGGNet, and 

DenseNet, which use deeper networks and cutting-edge 

technologies like residual connections and dense layers, 

have improved picture recognition.  Transfer learning has 

also grown due to the capacity to fine-tune models learnt on 

big image datasets like ImageNet for plant disease 

classification.  Deep learning models can now generalize 

across plant species and environmental conditions, making 

them more valuable for real-world applications.  Even with 

these advances, these models' accuracy, usefulness, and 

robustness are still in question, especially in resource-
constrained situations like rural farming. Benchmarking 

and comparing deep learning models for large-scale plant 

disease detection is necessary. 

 

III.  RELATED WORK 

A. Plant Disease Diagnosis 

Plant diseases threaten global food security by reducing 

crop yields by 10–40% and costing $220 [14]. Fungal, 

bacterial, viral, and nematode diseases such wheat stem rust 

(Puccinia graminis), potato late blight (Phytophthora 

infestans), and citrus greening (Candidatus Liberibacter) 

have destroyed agricultural systems[15]. While essential, 

traditional diagnostic approaches cannot satisfy precision 
agriculture's needs. This section discusses the progress of 

plant disease detection, highlighting conventional methods' 

limits and deep learning (DL)-driven solutions' 

transformational potential. 

B. Traditional Diagnostic Methods 

Plant diseases were formerly diagnosed by visual inspection 
by farmers or agronomists, identifying indications such as 

leaf discoloration, lesions, or reduced development. 

Although cost-effective, this strategy is subjective, error-

prone, and unsuitable for large-scale monitoring. Early-

stage infections or illnesses with similar symptoms (e.g., 

powdery mildew vs. downy mildew) are often 

misclassified[16]. 

Laboratory methods like ELISA and PCR enhance 

diagnosis accuracy by identifying pathogen-specific 

proteins or DNA[17]. These approaches involve specialized 

equipment, expert workers, and time-consuming processes 
that might take days to provide results. Delays in decision-

making can worsen disease transmission in time-sensitive 

situations, such as pandemic blights like Fusarium wilt in 

bananas. 

C. Limitations of Conventional Approaches 

Three critical limitations plague traditional diagnostic 
frameworks: 

 Large agricultural areas cannot be monitored by manual 

inspections and lab testing.  

 PCR and ELISA fail in fast disease epidemics.  

 Highly expensive and technological constraints prevent 

resource-limited regions from using modern diagnostics. 

According to Hughes and Salathé[18] just 12% of 

developing-country farmers have laboratory access. 

Pathogen dynamics shift with climate change, complicating 

diagnosis. Coffee leaf rust (Hemileia vastatrix) has spread 

to new areas due to warmer temperatures and more 
unpredictable rainfall[19]. Scalable, automated solutions 

are needed for these issues. 

D. The Shift Toward AI-Driven Diagnosis 

Machine learning (ML) and deep learning (DL) have 

transformed plant disease diagnostics by providing fast, 

high-throughput visual data processing. SVMs and random 
forests were utilized with handmade characteristics like 

texture and color histograms in early ML methods. Feature 

engineering and generalization across varied datasets were 

difficult for these models[20]. 

CNNs, a subclass of DL, changed the game. CNNs 

automatically extract features from raw photos to diagnose 

illnesses in tomatoes, rice, and cassava with high accuracy 

[21]. Mohanty et al.[20] showed that a pretrained AlexNet 

model has 99.35% accuracy on the PlantVillage dataset, a 

popular benchmark with 54,305 lab-curated photos of 

healthy and sick leaves. 
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Transfer learning helped DL adoption becomes more 

inclusive. On plant-specific datasets, pretrained models like 

ResNet [22] and EfficientNet[23] minimize computational 

costs while preserving accuracy. Real-time diagnosis via 

smartphone apps like Plantix and Agrio, enabled by mobile-

optimized architectures like MobileNet[24], empowers 
farmers in rural India. 

E. Challenges in Multi-Class Diagnosis 

Despite progress, DL-based multi-class diagnosis faces 

unresolved challenges: 

 Dataset Biases: Most public datasets (e.g., PlantVillage, 

AI Challenger) comprise lab-condition images with 
homogeneous backgrounds, limiting generalization to 

field conditions[16]. For instance, models trained on 

PlantVillage exhibit up to 40% accuracy drops when 

tested on field images[18]. 

 Class Imbalance: Rare diseases are underrepresented in 

training data. A study on the Cassava Disease Dataset 

found that models achieved 98% accuracy on common 

classes (e.g., cassava mosaic disease) but <70% on rare 

classes (e.g., brown streak disease) [25] 

 Inter-Class Similarity: Diseases with visually 

overlapping symptoms (e.g., early blight vs. late blight 
in tomatoes) lead to misclassification.  

F. Ethical and Practical Considerations 

DL models in agriculture create ethical considerations. 

Training data biases including overrepresentation of 

developed agricultural crops threaten misdiagnosis in 

underrepresented areas. Green AI research is needed 
because big DL models use too much energy. 

AI tool trust remains a barrier for farmers.  

IV.  DEEP LEARNING FUNDAMENTALS 

FOR IMAGE-BASED DIAGNOSIS 

Deep learning (DL) is the foundation of contemporary 

image-based plant disease detection, identifying and 
categorizing diseases across crops with unmatched 

accuracy. Traditional machine learning (ML) requires 

human feature extraction, while DL automates hierarchical 

representation learning from raw pixel data, making it ideal 

for complicated agricultural applications. The structures, 

strategies, and problems behind DL's success in this domain 

are examined here. 

A. Core Architectures 

Convolutional Neural Networks (CNNs) dominate image-

based diagnosis due to their ability to capture spatial 

hierarchies in visual data. Early architectures 

like AlexNet[26] demonstrated the feasibility of DL for 

plant pathology, achieving 99.35% accuracy on the 

PlantVillage dataset. Subsequent models improved 

performance through architectural innovations: 

 VGGNet: Used deeper networks (16–19 layers) with 

small 3×3 kernels to enhance feature extraction[27]. 

 ResNet: Introduced residual connections to mitigate 

vanishing gradients, enabling training of ultra-deep 

networks (e.g., ResNet-152). 

 EfficientNet: Optimized model scaling (depth, width, 

resolution) to balance accuracy and computational 

efficiency. 

Vision Transformers (ViTs) have recently challenged CNN 

dominance. By segmenting images into patches and 

applying self-attention mechanisms, ViTs capture global 

contextual relationships[28], [29].  

Hybrid architectures combine CNNs and transformers to 

leverage local and global features. The Convolutional 
Transformer (CvT)[30] integrates convolutional 

projections into ViTs, reducing computational costs by 40% 

while maintaining accuracy. Such models are promising for 

field applications where resource constraints are critical. 

B. Transfer Learning and Pretrained Models 

Transfer learning has democratized DL adoption in 
agriculture by repurposing models pretrained on large 

datasets like ImageNet. This approach is particularly 

effective given the limited size of plant disease datasets 

(e.g., PlantVillage contains 54k images vs. ImageNet’s 

1.2M). By fine-tuning pretrained weights, models rapidly 

adapt to new tasks with minimal data. 

For instance: 

 Mohanty et al.[20]  achieved 99.3% accuracy on 

PlantVillage using a pretrained AlexNet. 

 MobileNetV2  optimized for mobile devices, enabled 

real-time diagnosis in apps like Plantix with 93.5% field 
accuracy[31]. 

Pretrained models also mitigate overfitting. A study by 

Hughes & Salathé[32] showed that fine-tuning ResNet-50 

reduced validation loss by 32% compared to training from 

scratch on a tomato disease dataset. 

C. Key Techniques for Robust Diagnosis 

 Data Augmentation- Augmentation artificially expands 

datasets by applying transformations like rotation, 

flipping, and color jittering to simulate field 

variability[33]. Advanced methods include: 

o Generative Adversarial Networks (GANs): 

Generate synthetic images of rare diseases. Bi L et 

al.[34] improved cassava brown streak diagnosis 

accuracy by 18% using CycleGAN-augmented 

data. 

o Mixup: Blends pairs of images and labels to 

regularize models. Zheng et al.[35] reduced 
overfitting in wheat rust classification by 25% 

with mix-up. 

 Class Imbalance Mitigation- Imbalanced datasets bias 

models toward majority classes. Solutions include: 

o Focal Loss : Down-weights well-classified 

samples, emphasizing hard examples. Mwebaze et 

al.[36] used focal loss to boost rare cassava disease 

recall from 62% to 84%. 

o Synthetic Minority Oversampling (SMOTE): 

Generates synthetic samples for underrepresented 

classes. Gupta et al.[37] applied SMOTE to tomato 
disease data, improving F1-scores by 12%. 

 Multimodal Data Fusion- Combining RGB images with 

spectral, thermal, or hyperspectral data enhances 

diagnostic robustness. For example: 

o Gao et al.[38] fused RGB and near-infrared (NIR) 

images to detect early-stage potato blight with 

96% accuracy. 

o U-Net: Segments diseased regions using 

multispectral inputs, isolating pathogens from 

healthy tissue. 
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D. Performance Metrics and Challenges 

 Evaluation Metrics- Beyond accuracy, metrics like F1-

score, precision-recall curves, and ROC-AUC account 

for class imbalance. For resource-constrained 

deployments, inference time and model size are critical.  

Persistent Challenges 

 Computational Costs: Training ViTs or large CNNs 

requires GPU clusters, limiting . 

 Overfitting: Small datasets lead to poor generalization. 

Barbedo[16] found models trained on lab images failed 

in 60% of field tests. 

 Real-World Variability: Occlusion, dirt, and lighting 

changes degrade performance. Zheng et al.[35] 

proposed attention mechanisms to focus on disease-

specific features, improving field robustness by 20%. 

V.  CRITICAL REVIEW AND ANALYSIS 

The rapid adoption of deep learning (DL) for multi-class 

plant disease diagnosis has yielded impressive benchmarks, 

yet significant gaps persist in real-world applicability, 

reproducibility, and equity. This section critically evaluates 
the state of the field, addressing dataset biases, model 

limitations, and methodological inconsistencies that hinder 

scalable deployment. 

A. Dataset Limitations and Biases 

Most DL models are trained on lab-curated datasets 

like PlantVillage and AI Challenger, which feature high-
resolution images of isolated leaves against homogeneous 

backgrounds[18]. While these datasets enable rapid 

prototyping, they poorly represent field conditions where 

leaves are occluded, dirty, or imaged under variable 

lighting[16]. For instance, models achieving >95% 

accuracy on PlantVillage drop to 40–60% when tested on 

field datasets like PlantDoc[16]. Geographic and crop-

specific biases further exacerbate disparities: 80% of 

publicly available data focuses on staple crops (wheat, rice, 

maize) from temperate regions, neglecting tropical crops 
like cassava and yam[36]. This skews diagnostic tools 

toward high-income agricultural systems, leaving 

smallholder farmers in Africa and South Asia underserved. 

Annotation quality is another concern. Many datasets rely 

on crowdsourced labels from non-experts, leading to 

misclassified or ambiguous samples. A re-evaluation of 

the Cassava Disease Dataset found that 15% of labels were 

incorrect, artificially inflating model performance metrics. 

B. Model Performance and Generalization 

While DL models like EfficientNet and Vision 

Transformers (ViTs) achieve state-of-the-art accuracy, 

their computational demands (e.g., ViT-B/16 requires 632 

GFLOPs) limit deployment on resource-constrained edge 

devices. Lightweight architectures like MobileNet sacrifice 

accuracy for speed, creating a trade-off impractical for real-

time field use. 

Overfitting remains pervasive due to small dataset sizes. 
For example, models trained on <1,000 images per class 

exhibit up to 30% accuracy drops on external validation 

sets[16]. Techniques like data augmentation and transfer 

learning mitigate this but fail to address fundamental data 

scarcity. 

C. State-of-the-Art Architectures: A Comparative Lens 

State-of-the-Art  analysis is given in Table 1. 

Table 1: State-of-the-Art  analysis 

Model Strengths Weaknesses Best Use Case 

ResNet-50 
Robust feature extraction; transfer 

learning 

High computational cost (3.8B 

FLOPs) 
Lab-condition diagnosis 

EfficientNet 
Scalable accuracy-efficiency 

balance 
Struggles with fine-grained 

classification 
Medium-resource 

environments 

ViT 
Captures global context; excels on 

large data 
Requires >10k images for 

training 
Research-oriented settings 

MobileNetV2 
Mobile-optimized; real-time 

inference 
Lower accuracy on rare classes 

Field deployment on 
smartphones 

Hybrid models like Convolutional Transformers 
(CvTs)[30] and multimodal architectures (e.g., RGB + 

thermal fusion) show promise but lack large-scale 

validation. 

D. Multi-Class Diagnosis: Persistent Pitfalls 

 Early and late blight in tomatoes overlap in visual 
characteristics, leading to misdiagnosis. Non-

environmental ViTs confound these classifications. 

 Rare illnesses like cassava brown streak are 

underrepresented, therefore, models prefer majority 

classes. Focal loss and SMOTE induce synthetic 

artifacts but improve memory[36]. 

 Farmers want actionable binary outputs (healthy vs. 

diseased) and overly complex taxonomies (e.g., 

identifying 15 soybean illnesses) complicate interfaces. 

 

 

E. Reproducibility and Standardization Gaps 

The field has conflicting assessment protocols. Only 20% 

of research post code, and accuracy is prioritized above 

important metrics like F1-score and inference delay[39]. 

Claims of "95% accuracy" sometimes exclude class 

imbalance or cross-dataset validation, deceiving 

stakeholders[16]. Standardized standards, such as PDDB 
(Plant Disease Diagnosis Benchmark), are crucial for fair 

comparisons. 

F. Ethical and Sustainability Concerns 

 Models trained on Global North data fail in sub-Saharan 

Africa, where 30% of cassava crops are 
misdiagnosed[40]. 

 Train ViT-Large generates 1.4 tons of CO2, which 

contradicts sustainable agricultural [39]. 

 Farmers Trust: 65% favor hybrid human-AI workflows 

over totally automated solutions[41]. 
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G. Future Directions 

 Synthetic Data: GANs and diffusion models 

(e.g., Stable Diffusion) can generate diverse field-

condition images. 

 Edge Computing: TinyML frameworks 

like TensorFlow Lite enable low-power deployment on 

drones and IoT sensors. 

 Interdisciplinary Collaboration: Agronomists and DL 

researchers must co-design datasets and tools aligned 

with farmer needs. 

VI.  CONCLUSION 

Deep learning has improved plant disease diagnostics, 

providing scalable, automated solutions to a worldwide 

food security and agricultural sustainability issue. 

Researchers have successfully identified and classified 

diseases in a variety of crops, from staple grains like wheat 

and rice to economically important plants like cassava and 

coffee, using CNNs and ViTs. These innovations might 

enable precision agriculture, give farmers real-time 

diagnostic tools via cellphones, and reduce reliance on 
laborious, error-prone processes. Despite laboratory 

achievements, the area is still in need of equitable, strong, 

and sustainable real-world applications. Benchmark 

datasets are dominated by curated, lab-style photos, yet 

outdoor situations are complicated, with factors like 

obscured foliage, fluctuating illumination, and filthy 

surfaces degrading model performance. Current datasets 

lack geographic variety, underrepresent uncommon 

illnesses, and have annotation errors, resulting in biased 

models that fail in crop-vulnerable regions. The computing 

needs and carbon footprint of state-of-the-art designs pose 

ethical and practical questions regarding scalability and 
environmental effect, especially for resource-constrained 

agricultural communities. Class imbalance, inter-class 

symptom similarity, and overfitting hamper multi-class 

diagnosis, mis prioritizing treatments and eroding farmer 

faith. To maximize deep learning's promise in this sector, 

researchers must collaborate interdisciplinarity, combining 

agronomic experience with technology innovation to create 

real-world solutions. This involves curating various, field-

validated datasets, developing lightweight edge-

deployment models, and using synthetic data to solve data 

shortages. Sustainability, such as energy-efficient training 
frameworks and transparent assessment criteria, is essential 

to integrate technology advancement with ecological and 

social responsibility. Changing success criteria from 

accuracy-centric to usability, fairness, and resistance 

against climate-driven disease dynamics is also necessary. 

By connecting algorithmic innovation with on-ground 

application, stakeholders can create a new age of 

agricultural AI that detects illnesses, empowers farmers, 

improves food security, and protects ecosystems from 

biotic threats. As plant infections spread faster due to 

climate change, fair, adaptable remedies are becoming more 

urgent. By working together, being ethical, and combining 
technical and human-centric design, deep learning may 

become a key instrument for sustainable global agriculture. 
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