

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552, Volume-10, Issue-6, November 2022
 https://doi.org/10.55524/ijircst.2022.10.6.20

Article ID IRPV1075, Pages 120-137
www.ijircst.org

Innovative Research Publication 120

Sentiment Based Product Recommendation System for E-
Commerce Using Machine Learning Approaches

Muzakkiruddin Ahmed Mohammed

B. Tech Scholar, Department of Electrical and Electronics Engineering, Lords Institute of Engineering and Technology,
Hyderabad, India

Copyright © 2022 Muzakkiruddin Ahmed Mohammed. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Today, e-commerce is a thriving industry.
We do not need to approach every customer to accept their
orders here. A business creates a website to offer things to
clients, who can then purchase the stuff they need within
the same website. These e-commerce firms include well-
known ones like Amazon, Shopify, Myntra, Flipkart, and
Ajio. To create a product recommendation system for the
end customers, we will be using the data set of e-commerce
product reviews in this final project. A sentiment analysis
model will be used to enhance the suggestions. Under this
final project, we will develop a sentiment analysis engine
utilising a variety of machine learning approaches before
selecting the model that produces the best results.

KEYWORDS- Recommender Systems; Logistic
Regression and Analysis; Random Forest; Xgboost;
Hyperparameter Tuning; Deployment.

I. INTRODUCTION

Building an end-to-end recommendation system to suggest
things to customers and they'll most likely enjoy based on
their purchase history would be fascinating. Customer
reviews and ratings for items are extremely important in
buying decisions [1]. Assume we wish to purchase a certain
product from any e-commerce website. We look at the
product reviews, and if individuals provide positive
comments or higher ratings, the product is a great buy; if
we see more negative comments or lower ratings, the
product is not a great investment. This recommendation
system, on the other hand, is built on the ability to automate
this process and then propose things to other customers
based on the already existing data.
Let's say we are a machine learning engineer at an online
retailer. This online retailer offers products in a variety of
categories, including kitchen and dining items, books,
personal care items, pharmaceuticals, cosmetics, and beauty
products. It also sells products in a number of other
disciplines, including the sale of electrical appliances, home
goods, and health care items. Due to the rapid development
of technology, online retailers must compete with
established industry players like Amazon, Flipkart, and
others in order to grow swiftly in the e-commerce sector
and establish themselves as key players [2]. We are being
tasked as a senior ML engineer with developing a model
that would enhance the suggestions sent to users based on
their prior reviews and ratings. We intended to do this by
developing a sentiment-based product recommendation
system, which entails the subsequent activities.
 Researching data and analysing sentiment

 Construction of a recommendation system
 Using the sentiment analysis model to improve the

suggestions
 The end-to-end project's user interface deployment

Under this final project, we will develop a sentiment
analysis engine utilising a variety of machine learning
approaches before selecting the model that produces the
best results. The creation of the recommender systems will
be the next stage of this project.

II. UNDERSTANDING RECOMMENDER
SYSTEMS

How quickly we can find the item we want to buy on an e-
commerce platform is one of the key elements that
encourages us to actually make the transaction. This may be
done, for instance, by using Amazon's "Customers that
purchased this item usually bought..." area to generate
recommendations.
Systems that use suggestion inputs from users and
aggregate them before sending them to the right recipients
are known as recommender systems. Further definitions
include a system that generates customised suggestions as
output or one that directs the user in a tailored manner
toward interesting items within a wider range of available
choices. In the not-too-distant future, recommender systems
will play a crucial role in the media and entertainment
sector [4]. Collaborative recommender systems, Content-
based recommender systems, Demographic-based
recommender systems, Utility-based recommender systems,
Knowledge-based recommender systems, and Hybrid
recommender systems are the main six types of
recommender systems that are used in the Media and
Entertainment industry [5].
We witnessed two popular forms of recommendation
algorithms: collaborative filtering and content-based
filtering [6] . Start with the content-based filtering of the
two different recommendation systems. On e-commerce
sites, users are frequently given recommendations for
particular goods based on previous purchases or the
products that users would have previously looked up. These
are based on filtering that is content-based. The magnitude
difference is now considerably bigger than it was when the
item vectors just included logical values. As a result, the
recommender system will be better able to distinguish
between the products. User-based Collaborative filtering
will be covered in the following section.
It's necessary to move on to collaborative filtering, the 2nd
most popular form of filtering now that we understand
content-based filtering. This is based on the straightforward

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 121

tenet that a user's preferences are strongly connected with
what other users who are similar to them have previously
enjoyed. We will discover more about item-based
collaborative filtering over the next section.
We will now comprehend about item-based collaborative
filtering after learning about user-based collaborative
filtering first. User-Based Collaborative Filtering is a
method for predicting the products that a user would enjoy
using the ratings provided to that product by other
customers whose tastes are identical to the targeted users.
Collaborative filtering is a popular technique for creating
recommendation systems on internet. [8] After getting a
sense of the many classifications of recommendation
systems, let's examine some real-world issues that
frequently arise while developing a recommendation model.

A. Cold Start

This issue occurs whenever new users or new items are
added to the system. Since a new item cannot be
recommended to users at first once it is added to the
recommender system without even any ratings or reviews, it
is difficult to predict the preference or curiosity of
customers, which results towards less accurate
recommendations.

B. Sparsity

It frequently occurs that most customers don't rate or review
the products they buy, making the rating model highly
sparse and potentially causing data sparsity issues. This
makes it harder to identify groups of users that share ratings
or preferences.

C. Synonymy

Synonymy occurs when an individual unit is described by
two or more separate names or lists of products with similar
meanings; in this case, the recommender system is not able
to determine if the words depict different products or the
identical product.

D. Privacy

In general, a user must feed his individual data (have
expertise with hyper-personalization) to the recommender
systems in order to receive more valuable services, but this
raises concerns about confidentiality of information, data
privacy and security. [13] As a result, many users are
hesitant to serve their own personal information into
recommendation engines some of which have data concerns
about privacy. The recommender systems is required to
collect and use personal information from users in order to
deliver customised suggestion services. To address this
challenge, recommender systems need to build confidence
among its consumers.

E. Scalability

The scalability of algorithms with real-world datasets under
the recommender systems represents a significant
challenge. A large amount of changing data is created by
customer interaction mostly in form of user ratings, user
reviews and hence scalability is indeed a major worry for
these datasets.
Recommender system inefficiently interpret findings from
huge datasets; certain advanced large-scaled algorithms are
necessary to address this issue [7].

F. Latency

We see that numerous items are being added more often to
the database of recommender system; however, only
previously existing products are recommended to
consumers since recently introduced products have not yet
been rated. As a result, the issue of latency develops. To
address this issue, the collaborative filtering technique and
category-based strategy, in conjunction with user-item
interaction, can be implemented.

III. PROBLEM STATEMENT

Today, e-commerce is a thriving industry. We do not need
to approach every customer to accept their orders here. A
business creates a website to offer things to clients, who can
then purchase the stuff they need within the same website.
These e-commerce firms include well-known ones like
Amazon, Shopify, Myntra, Flipkart, and Ajio. Let's say we
are a machine learning engineer at an online retailer. This
online retailer offers products in a variety of categories,
including kitchen and dining items, books, personal care
items, pharmaceuticals, cosmetics, and beauty products. It
also sells products in a number of other disciplines,
including the sale of electrical appliances, home goods, and
health care items. Due to the rapid development of
technology, online retailers must compete with established
industry players like Amazon, Flipkart, and others in order
to grow swiftly in the e-commerce sector and establish
themselves as key players. We are being tasked as a senior
ML engineer with developing a model that would enhance
the suggestions sent to users based on their prior reviews
and ratings. We intended to do this by developing a
sentiment-based product recommendation [9] system,
which entails the subsequent activities

 Data acquisition and sentiment analysis
 Setting up a proper recommendation system
 Utilizing sentiment analysis model to improve

suggestions
 Deploying a complete project with a user interface
 30,000 reviews for more than 200 distinct goods make up

this dataset (figure 4). There are almost 20,000
individuals who have left ratings and feedback.

The first task's steps are outlined below.

 Analyzing exploratory data (see figure 1-4).
 Cleaning of data (see figure 5-8).
 Text preprocessing (see figure 9-12).
 Feature extraction: To extract features from text data, we

can use any of the methods available, such as bag-of-
words, TF-IDF vectorization, or word embedding.

 Text classification model training: We must create at
least three ML models. We must then evaluate the
performance of each of these models and select the best
model.

 Logistic regression (see figure 18, figure 21)
 Random forest (see figure 23, figure 26)
 XGBoost (see figure 23, figure 26)
 Naive Bayes (see figure 23)
 Building a recommendation system: We must choose one

categorization model from these four depending on its
performance. Putting together a recommendation system
as previously stated, we can employ the following sorts
of recommendation systems.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 122

 System of user-generated recommendations
 System of item-based recommendations

 Our objective is to examine the recommendation systems
and choose the one that is most suited for this situation.

 Using the sentiment analysis model to improve
suggestions: The next step is to connect this
recommendation system to the sentiment analysis model
that was created earlier. When we utilise the
recommender system to propose 20 things to a specific
user, we must filter out the 5 best products based on the
feelings of the 20 recommended product reviews. As a
result, we will get an ML model (for feelings) as well as
the best-suited recommendation system. Following that,
we must make the entire project public.

 Deployment of this whole project, complete with a user
interface: We will deploy the entire project once we have
obtained the ML model and the best-suited
recommendation system. To deploy machine learning
models, we must utilise the Flask framework that is
commonly used to construct web apps. We must utilise
Heroku to make the web application public. Heroku is a
platform as a service (PaaS) that enables developers to
build, run, and operate apps fully on the internet.

IV. DATA LOADING AND DATA CLEANING

We will import some helpful Python modules and load the
data in the form of a data frame in this step. After the data
has been put into the data frame, we will go through the
data cleaning process to remove any missing values. Now
let us begin cleaning up and preparing the data.

Figure 1: Import Packages

Figure 2: NLTK libraries

Figure 3: Modelling

In this, we first loaded the data after importing a few helpful
Python modules. We loaded the data set from a GitHub
repository. Additionally, we discovered some missing
values in the data and deleted them. In the following, we
performed fundamental data cleaning to eliminate missing
values from a data collection.

Figure 4: Load the dataset

In the following, we performed fundamental data cleaning
(figure 5) to eliminate missing values from a data
collection.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 123

Figure 5: Data cleaning

The columns'reviews didPurchase,"reviews userCity,'
and'reviews userProvince' have a very high proportion of
missing data in this section. To address this, the data
frame's columns with more than 50% null values was
eliminated. The 'reviews userCity' and'reviews
userProvince' columns, as well as 4
the'reviews doRecommend' and 'reviews didPurchase'
columns, were also removed since they were irrelevant to
our analyses.

Figure 6: Finding the percentage of missing values in
remaining columns

We also eliminated rows with null values in columns
like'reviews text,"reviews title,"reviews username,' 'user
sentiment,"reviews date,' and'manufacture.'

Figure 7: Dropping the columns with more than 50%
missing value

As we can see from the data frame, the value in the 'user
sentiment' column is either 'Positive' or 'Negative,' which
cannot be utilised as a target variable for a classification
model because it is a string data type. To address this issue,
values were transformed to binary using the user-created
function 'get sentiment binary(x),' which transforms
positive sentiment to 1 and negative sentiment to 0.

Figure 8: Converting the target variable into binary
numerical value

The next section will demonstrate able to successfully

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 124

cleanup textual data employing text processing
technologies.

V. TEXT PROCESSING

We loaded the data in the preceding section and reduced the
number of missing values to nearly 0%. In this section, we
will execute preprocessing processes on the textual data to
further clean it. We used the fundamental text preparation
techniques described below in this section:
Combining the review text and title into one column: Since
the columns "reviews title" and "reviews text" both include
a textual representation of the emotion, combining them
into one column, "Review," would be helpful for the
analysis.

Figure 9: Combine Review Text and Title into one

Lowercasing: Lowercasing is carried out as a best practise
and to steer clear of any problems brought on by the text's
case sensitivity.

Figure 10: Lowering

Removing punctuation: deleting the punctuation
Punctuation should be removed since it serves no use to do
so while attempting to extract meaning from text data.

Figure 11: Removing punctuation

Eliminating stop words: Stopwords like "the," "in," "on,"
and "is" contain little to no meaning when meaning is being
extrapolated from text. So, getting rid of them is a smart
idea(see figure 12, and 15).

Figure 12: Remove Stopwords

VI. LEMMATIZATION

We will use sophisticated text processing techniques like
"lemmatization" and "noise reduction" in the next section to
further cleanup the text data [3].
Lemmatization is a text processing technique that changes a
given word to its lemma (root) form [3], like we saw in
the above. For instance, changing "better" and "best" to
"good," "learning" to "learn," etc.
Let's now review the lemmatization procedure:

 WordnetLemmatizer lemmatizes the input word and its
related wordnet POS tag before joining the two inputs to
create a sentence.(see figure 13, and 14)

 By utilising the function "nltk tag to wordnet tag()," we
must define the function that converts "nltk POS tag" to
"wordnet POS tag" in order to obtain wordnet POS tag.

 We then define the function lemmatize
sentence(sentence), which carries out the subsequent
actions in the following order:

 Tokenize the phrase and use the function nltk.pos
tag(nltk.word tokenize(sentence)) to determine the POS
tag of each token (word).

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 125

Figure 13: Lemmatization

 Make a tuple containing the word (token) and the
wordnet POS tag that goes with it (which may be
produced by the aforementioned function, "nltk tag to
wordnet tag").

 After iterating the lemmatizer over the wordnet tagged
tuple (using the code "lemmatized
sentence.append(lemmatizer.lemmatize(word, tag))"),
create a list called "lemmatized sentence" that includes
the lemmatized sentence and link them.

 Applying the "lemmatize sentence(sentence)" function on
the "Review" column next will remove noise from the
text data.

Figure 14: Lemmatization

VII. NOISE REDUCTION APPROACH

We used the noise reduction approach in this project, which
entails the following steps (see figure 15):

 Deleting HTML tags
 Elimination of white space
 Removal of numbers and characters that aren't ASCII
 We have so far used a variety of text processing

techniques to clean the data and improve our findings.
 The reviews text will be used to construct features in the

following section utilising vectorizer techniques like TF-
IDF.

Figure 15: Remove Stopwords

VIII. TRAIN TEST SPLIT AND TF-IDF
VECTORIZER

Figure 16: Defining features and target variables

We used several text processing techniques to clean up the
data set in the previous section.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 126

This text data will now be used for ML modelling [10]. To
do this, first divide the data into test and train sets, then
describe the features and the target variables, and last
construct a TF-IDF vectorizer. Comprehend how to carry
out these actions by examining the project.

Figure 17: Train Test Split and TF-IDF VECTORIZER

The lessons we observed in this session are summarised as
follows:
Only 11.17 percent of the target variable's distribution was
negative, with 88.8 percent of responses being positive.
Because there was more information regarding positive than
negative attitudes, the data was obviously unbalanced.
The data set was then divided into a 70% train data set and
30% test data set. The ML classifier could not be directly
fed the data in the train set since it was in text form. It was
necessary to transform the data into numerical form. To
achieve this, we created a matrix with the TF- IDF score of
the review that corresponded to each word as a value in
each column, the reviews as rows, and the words from the
corpus as columns in the matrix(see figure 16, and 17).
We might also use alternative vectorization techniques
besides TF-IDF, including the bag-of-words model or
normalised term frequency. To forecast the sentiments, we
will use the logistic regression model in the next section.

IX. LOGISTIC REGRESSION AND ANALYSIS

We have thus far cleaned data, developed a TF-IDF
vectorizer, and extracted features from the review's text.
Now let's use the train data set to create a logistic regression
model.
We will construct the logistic regression model without
utilising the sampling strategy in the next section of code,
and we'll analyse the model's results using several
performance metrics.

Figure 18: Logistic Regression and Analysis

In this section, we created a logistic regression model based
on the TF-IDF scores assigned to each word in the data set.
We also tested the model's performance using two matrices,
sensitivity and specificity, for the train and test sets(see
figure 21, 24, and 25), respectively.
The fraction of actual positive instances that were projected
as positive is referred to as sensitivity.

 True positives / (True positives + False negatives) =
Sensitivity

 Specificity is defined as the fraction of genuine negatives
that were projected to be negatives.

 True negatives / (False positives + True negatives) =
Specificity

Figure 19: Confusion Matrix for logistic Regression

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 127

The logistic regression model's specificity without sampling
is 9.7% for the train set and 6.2% for the test set, which is
not promising for predicting actual negative outcomes. This
is because the data set is unbalanced and contains more than
80% favourable evaluations. We shall utilise sampling
approaches to address this.

Figure 20: Storing the values in variables

In the next section, we will use an oversampling approach
to create a logistic regression model.
In this part, we used an oversampling strategy to obtain
equal value counts of the target variable, i.e., 1s: 18404 and
0s:18404, which balances the data.

Figure 21: Sensitivity for train and test set

Furthermore, the specificity increased from 9.7% to 99.8%
for the train set and from 6.2% to 53.1% for the test set.
In the following session, we will see how to use another
sampling strategy called 'Smote,' as well as analyse the
performance metrics of the train and test sets.[11]
We used Smote on the train set in this research and
followed the same method as in the prior oversampling
technique. As a consequence, the model generated with the
Smote approach had significantly higher sensitivity than the
model built without a sampling technique. However, it
improved less in specificity. We will describe all of the
approaches utilised in the logistic regression model in the
code supplied above in the following section(see figure 18,
and 21).

X. LOGISTIC REGRESSION MODEL: SMOTE

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 128

Figure 22: Logistic Regression Model: Smote

As a result, we get the summary report shown above the
figure 22.

Table 1: Logistic Regression (Test Dataset)

Oversampling also has a higher sensitivity over Smote [12].
As a result, we may decide whether to develop further ML
models using oversampling approaches in order to obtain
better predictions. In the following part, we will apply
additional classification Machine learning Models to the
oversampled data.

XI. NAIVE BAYES, RANDOM FOREST AND
XGBOOST

We understood about the 'Smote' and 'oversampling'
approaches in the previous segment and developed a
logistic regression model. Specificity and sensitivity were
then utilised also as performance metrics. Oversampling is
indeed a promising strategy for dealing with unbalanced
data, and it will therefore be utilised for various

classification models such as Naive Bayes, Random Forest,
and XGBoost(see figure 23, 24 and 25).

Figure 23: Naive Bayes, Random Forest and XGBoost

Let us outline the actions we took in this section.
We utilised the oversampled data on Random Forest &
Naive Bayes models after testing its performance on logistic
regression.
We generated a vectorizer on the oversampled data using
the 'word vectorizer.transform()' function, which was then
put into the Naive Bayes model, much as we did with
logistic regression.
To evaluate the model's performance, we examined three
matrices: the confusion matrix, specificity, and sensitivity,
that will be compared with some other models in the next
section.
In the following part, we will apply the XGBoost algorithm
on oversampled data.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 129

Figure 24: Conclusion metrix for train and test set

Till now, we have implemented and evaluated logistic
regression, Naive Bayes, Random Forest, and XGBoost
classification models. In the following section, we will
utilise hyperparameter tweaking to even further increase the
performance of the models. Then try comparing all of them
and select the best model.

Figure 25: Specificity for Train and Test Set

XII. RANDOM FOREST AND XGBOOST_
HYPERPARAMETER TUNING

We used Naive Bayes, Random Forest, and XGBoost to
oversampled data in the previous section and examined
their performance matrices, specificity, and sensitivity (see
figure 26, 27 and 28).

Figure 26: Random Forest and XGBoost Hyperparameter
Tuning

We will discover how to create a Random Forest model
using hyperparameter tweaking in the next section.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 130

Figure 27: ML – hyperparameter tweaking

As we now know, the optimal set of parameters for a model
may be obtained by using the hyperparameter tuning
approach.
Here is a brief summary of how the oversampled data was
subjected to hyperparameter tuning:
In general, there are two methods for adjusting
hyperparameters: "randomised search" and "grid search."
To find the ideal parameters for this final project, we
utilised a randomised search.
To achieve this, we first set the parameter space that the
algorithm would use to find the optimal parameters within
that range before importing RandomizedSearchCV
from'sklearn.model selection'.
One thing to bear in mind is that finding the ideal settings
will take longer the more parameter combinations are taken
into account.

Figure 28: ML – Sentiment Model Summary

Table 2: General Test Scenario of ATM machine
Generation

We examined the table 2 that is described above in the table
1.
When the F1 score is high (tending toward 1), the model
correctly predicted few false-positive and false-negative
results.
Based on the table 1, it has been determined that logistic
regression with oversampled data is the best model. It has
an excellent F1 score, a respectable specificity, and a
sensitivity of 90+. We are going to create a
recommendation system in the next section.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 131

XIII. DATA PROCESSING FOR
RECOMMENDATION SYSTEM

We carried out several text processing operations and
created ML models in the prior sections. Additionally, we
saw that the data set we used was unbalanced(see figure
29).

Figure 29: Data Processing

Using oversampling and hyperparameter tweaking
approaches, we produced a number of ML models. We then
discovered that the logistic regression model using the
oversampling strategy is the best match for this specific
data set among all the models.

XIV. USER-BASED
RECOMMENDATION SYSTEM

We divided the data set between test and training halves in
the previous phase. In this section, we will create and test a
user-based recommendation system (see figure 30-37).

Figure 30: User-Based Recommendation System

In the following code, we will construct a user-based
recommendation system and determine the user-user
similarity, or correlation matrix, that will be used to propose
goods to users.

Figure 31: Dummy Train Creation End Project

The prediction and assessment processes will employ these
datasets.
Later, a dummy train will be used to forecast the
performance of films that the user has not yet reviewed. We
shall designate the user-rated movies as 0 during prediction
in order to disregard them. The user-unrated movies are
indicated with a 1 for prediction

Figure 32: Normalising the Rating of Product

Using the modified Cosine
We do not eliminate the NaN values and merely compute
the mean for the user-rated movies.
Now let's examine the system of product recommendations

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 132

we are going to construct. We will divide the data set into test and training data sets in the next section.

Figure 33: Separation of the entire data set into the test and train data sets

As can see in this code how we separated the entire data set
into the test and train data sets.
The test data set will be used to assess the recommendation

model while the train data set will be utilised to train the
cosine similarity matrix between the users and items.

Figure 34: Normalising the rating of the product for each user around 0 mean

Additionally, we built a data set called "dummy train" that
was later transformed into a matrix format using the "pivot
table" function. All the blank numbers were tagged as 0,
while all the other rating values were marked as 1. To
obtain the anticipated ratings only in the final predicted
matrix, the "dummy train" was developed.
The following actions were taken in this code:
Using the pivot table function, we transformed the train data
set to matrix format. The 'user based matrix' in this case was
in the order of 18,061 X 233, where 18061 is the number of
users in the train data set and 233 is the number of unique
items in the train data set.
After building the 'user based matrix,' we normalised the
product ratings for each user to a mean of 0.
We computed the 'user correlation' matrix using the
'pairwise distances' function to determine user correlation.
The train dataset had 18061 users, as we could see. As a

result, the order of the user correlation matrix is 18,061 X
18,061.
When we identified the user correlation matrix, we put a 0
whenever there was a negative correlation between the
users.
Finally, we computed a dot product of the 'user correlation'
matrix and the 'user based matrix' to obtain the predicted
ratings of the items for each user and recorded the results as
'user predicted ratings.'
Because we are only interested in items that have not been
evaluated by users, we must disregard products that have
been rated by users by setting it to zero. To do this, multiply
'user predicted ratings' by 'dummy train' to obtain the 'user
final rating'. Only anticipated ratings of users relating to
items not rated by the user will be included in the 'user final
rating' matrix.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 133

Figure 35: Dot product of the 'user correlation' matrix and the 'user-based matrix'

We will evaluate the recommendation system using the test
data set in the next part.
Let's condense the lessons we've learned from this code into
the following points:

It's crucial to bear in mind that we must exclude individuals
who are exclusive to the test data set and retain only those
users who are present in both the test and train data sets.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 134

Figure 36: Calculating the RMSE

We have now reduced the number of users to those who
appear in both the test and train data sets, and we have
developed a product called "common user based matrix"
that contains a user matrix. There are 1,698 users and 111
items, according to the common user based matrix matrix,
which has an order of 1,698 X 111.

Figure 37: Finding total non-NaN value

In the subsequent code, we will run the trained model's
assessment and extract the correlation coefficient for typical
users.
Let's review what we discovered in the code:

 The user correlation matrix that we acquired from the
train data set must first have the correlation coefficient of
the common users extracted from it. As a result, we
receive the 1698 x 1698 user correlation matrix known as
"user correlation df 3" for the common users.

 We must now take the dot product of the "user correlation
df 3" matrix and the "common user based matrix" in
order to forecast the test users' ratings.

 We may only complete the evaluation on the goods that
have received user ratings. This is thus rated as 1. In
contrast to "dummy train," this.

 A matrix of the kind 1,698 X 111 will result from
entering the values 1 and 0 in the "dummy test" matrix.

 For a prognosis on the products that users have rated,
multiply the "common user expected ratings" matrix by

the "dummy test" matrix.
 The RMSE (Root Mean Square Error), which in the user-

based recommendation system is 2.533, may be
calculated after we know both the anticipated and actual
ratings.

 We'll design and evaluate an item-based recommendation
system in the part after that.

XV. ITEM-BASED
RECOMMENDATION SYSTEM

We will now create an item-based recommendation system
after creating a user-based recommendation system in the
previous part (see figure 38-39).

Figure 38: Item-based recommendation system

The procedures are identical to what we already know from
the prior lesson. So, in the next section of code, let's begin
creating the item-based recommendation system.
We took the actions shown below in the code previously
mentioned:
We started by making a "item based matrix" containing
rows of items and columns of people. 233 X 18061 made
up the "item based matrix," where 233 represented the
number of items and 18,061 represented the number of

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 135

users.
We then computed the cosine similarity between the
products using the "pairwise distances" function, arriving
with a "item correlation" matrix with dimensions of 233 X
233.
We computed the dot product of the "item based matrix"
and the "item correlation" matrix to determine the projected
ratings.
After obtaining the dot product, we limited our filtering of
the reviews to those items that the customer had not rated in
order to support the product's suggestion.

Figure 39: Item-item matrix representation

After identifying the items shared by the test and train data
sets, we assessed the item-based recommendation system,
just as we did with the user-based recommendation system,
and obtained an RMSE value of 3.55—higher than the
RMSE value we obtained for the user-based
recommendation system.
We will discover how to make product recommendations to
a user in the next section.

XVI. RECOMMENDING PRODUCTS
TO USERS

We created both user-based and item-based
recommendation systems in the past two stages.
We will discover how to give a consumer product
recommendation in this section. We will employ the user-
based recommendation system for this as it had a lower
RMSE value than the model when we evaluated it. On the
basis of the projected ratings, we gleaned from the user-
based recommendation system, we will suggest the top 20
goods to a user in the following code (see figure 40-42).

Figure 40: Recommending Products to Users

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 136

In order to anticipate the top 20 goods from the user-based
recommendation system, let's attempt to grasp exactly what
we need to accomplish. To obtain the anticipated ratings of
the goods belonging to a user, all we need is the "user final
rating" matrix.

Figure 41: "user final rating" matrix

In order to make a forecast for the deployment of the
recommendation system, we must pickle the "user final
rating" matrix. Once we have the user, all that is left to do is
publish the top 20 goods for that user after sorting the
anticipated ratings in descending order. We will discover
how to improve the top 20 suggested goods using sentiment
analysis and the machine learning models we created
previously in the next session of code.
Let's first attempt to comprehend the principle guiding the
fine-tuning:
Using the "user final rating" matrix, we have already given
a user a recommendation for the top 20 goods.
Here, we are attempting to use sentiment analysis to select
the best five items out of a total of twenty. We now have a
list of the top 20 items from the train data set as well as
reviews for each of the 20 goods. We run each product's
review through the chosen logistic regression model to
determine the reviewer's emotion.
Once we get the sentiment, we may determine the
percentage of favorable sentiments for each product and
organize them according to decreasing percentages once we
have the emotion. The user's filtered suggestions would
now be the top five products on this list. Let's now attempt
to learn what we require in order to optimize the
recommendation system. A logistic regression model to
forecast the emotion associated with each product review
The review is transformed by the "word vectorizer" into the
TF-IDF vectorizer before being processed by the ML

model. Therefore, we must pickle the user final rating
object separately from the logistic regression model and the
"word vectorizer" object. We will discover how to deploy
the full project using Flask and Heroku in the next section.
Deployment
To do sentiment analysis up until now, we constructed a
model. Then, after fine-tuning the suggestions using the
sentiment analysis model, we constructed a
recommendation system and forecasted the top five goods
to be suggested to a user. We will deploy the full project
using Flask and Heroku in this section. Implementing the
code in the Visual Studio Code environment will serve as
the segment's introduction. We made an app.py file, a Flask
file designed to act as a link between the HTML page and
the machine learning and recommendation system models,
as we saw in the code. We will use our local machine to
execute the web application in the end. So we created a
whole web application and installed it on a local machine.
We have seen usage of Heroku to publicly launch this web
application. By doing so, we developed a web application
and used Flask and Heroku to deploy the complete project.

Figure 42: Deployment

XVII. CONCLUSION

We developed a recommendation engine in this research
using a sentiment analysis model. The following is a
summary of the procedures we followed:
One of the first and most crucial procedures in developing
any ML model on textual data is text processing. Although
there are a lot of stages we may add to the lexical
processing of text data, we cleaned the text data by doing
the following:

 Lowercasing: Lowercasing is carried out as good practise
and to prevent any case sensitivity that can arise while
creating a function in Python.

 Eliminating punctuation: It is a good practise to delete
punctuation because it adds nothing to the process of
deriving meaning from text data.

 Removing stop words: When attempting to glean
meaning from text, stopwords like "the," "in," "on," and
"is" are of little use. So, getting rid of them is a smart
idea.

 Lemmatization: One of the fundamental phases in
reducing each word to its lemma base form is
lemmatization.

Following the completion of the fundamental text
processing processes, we must specify the target variable
and the characteristics. The user's emotion, which may be
either good or negative, is unquestionably the goal variable.
The word vectorizer, which we may create using a bag-of-
words model, TF-IDF, or Count Vectorizer, will be one of
the features.
In this project, we built the TF-IDF vectorizer and utilized it
to generate the features for the classification model.
For sentiment analysis, creating classification models: We

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 137

created the logistic regression, Naive Bayes, Random Forest
Classifier, and XGBoost machine learning models for
classification. We could see that the data was unbalanced,
thus it was necessary to do so before continuing. Out of the
several combinations we tried, we decided on logistic
regression with oversampling. Building the user- and item-
based recommendation systems, as well as making
predictions using them, followed the construction of the
sentiment analysis model. These systems were then tested
using the test data set. Additionally, we saw that the user-
based recommendation system had a lower RMSE; as a
result, we decided to utilise it to suggest goods to
consumers.
The user-based recommendation system was the one we
selected for fine-tuning. We then refined the suggestions
based on the product reviews and its expected feelings
using the sentiment analysis model.
Final step: Using Flask and Heroku, we deployed the entire
project.

REFERENCES

[1] E. Turban, D. King, J. Lee and D. Viehland, Electronic
Commerce: A Managerial Perspective, Upper Saddle River,
NJ, USA: Prentice-Hall, 2002.

[2] Liu, J.G., Zhou, T., Wang, B.H.: Research Progress of
Personalized Recommendation System. Progress in Natural
Science 19(1), 1–15 (2009)

[3] J.B. Schafer, J. Konstan and J. Riedl, "Recommender systems
in e-commerce", Proceedings of the 1st ACM conference on
Electronic commerce, pp. 158-166, 1999, November.

[4] M.B. Dias, D. Locher, M. Li, W. El-Deredy and P.J. Lisboa,
"The value of personalised recommender systems to e-
business: a case study", Proceedings of the 2008 ACM
conference on Recommender systems, pp. 291-294, 2008,
October.

[5] Recommendation Systems: Applications Examples &
Benefits, 2020, [online] Available:
https://research.aimultiple.com/recommendation-
system/#media.

[6] M. Sree Vani, "IJARCCE A Recommender System for
Online Advertising", International Journal of Advanced
Research in Computer and Communication Engineering, vol.
5, no. 2, 2016.

[7] Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim and R.
Kashef, "Recommendation Systems: Algorithms Challenges
Metrics and Business Opportunities", Applied Sciences, vol.
10, no. 21, pp. 7748, 2020.

[8] Linden, Greg, Brent Smith, and Jeremy York. "Amazon.com
recommendations: Item-to-item collaborative filtering." IEEE
Internet computing 7.1 (2003): 76-80

[9] Park, Sung Eun, Sangkeun Lee, and Sang-goo Lee. "Session-
based collaborative filtering for predicting the next song."
Computers, Networks, Systems and Industrial Engineering
(CNSI), 2011 First ACIS/JNU International Conference on.
IEEE, 2011.

[10] Suksawatchon Ureerat, Sumet Darapisut, and Jakkarin
Suksawatchon. "Incremental session based collaborative
filtering with forgetting mechanisms." 2015 International
Computer Science and Engineering Conference (ICSEC).
IEEE, 2015.

[11] Mustafa, Ghulam, and Ingo Frommholz. "Performance
comparison of top N recommendation algorithms." 2015
Fourth International Conference on Future Generation
Communication Technology (FGCT). IEEE, 2015.

[12] Oard, Douglas W., and Jinmook Kim. "Implicit feedback for
recommender systems." Proceedings of the AAAI workshop
on recommender systems. 1998.

[13] Romadhony, Ade, Said Al Faraby, and Bambang
Pudjoatmodjo. "Online shopping recommender system using
hybrid method." Information and Communication
Technology (ICoICT), 2013 International Conference of.
IEEE, 2013.

ABOUT THE AUTHORS

 Muzakkiruddin Ahmed Mohammed is
a B.Tech student in the Department of
Electrical and Electronics Engineering,
Lords Institute of Engineering and
Technology, Hyderabad, India

