
International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-3, Issue-3, May- 2015

111

Better Defect Analysis and Defect Prevention
for Software Process Quality Improvement

D.Kavitha

Abstract— Most large software products have good quality

control process. Defect Prevention can be applied to one or
more phases of the software development life cycle to improve
software process quality. Defect Prevention involves analyzing
defects that were encountered in the past and taking specific
actions to prevent the occurrence of those types of defects in
future. Root cause analysis is the process of finding and
eliminating the causes of defect, which prevents the problem
from recurring. Pro-active defect prevention is used to control
the defects with the experience of the previous projects.
Reactive defect prevention identifies and conducts root cause
analysis for defects meeting.

Keywords— defect, defect prevention, software quality

I. INTRODUCTION

In Software development life cycle, defects are
identified at various stages like Requirements Review,
Design Review, Code Review, Unit Testing, Integration
Testing, Functional Acceptance Testing, User Acceptance
Testing and Customer Review.

P.K. Suri1 and Rajni Rana [5] defined defect as: “An
incorrect step, process, or data definition in a computer
program which causes the program to perform in an
unintended or unanticipated manner”.

 “The defect management must be more proactive

than reactive”.
Software defects data is an important source to the

organizations for the software process improvement
decisions and that ignoring defected data, results in great
loss to the organization.

A. Defect
A Software defect or bug is a condition in a software

product which does not meet a software requirement or
customer requirement. A defect is an “error in coding or
logic that causes a program to malfunction or to produce
incorrect / unexpected results” [7]. Defect is defined as “A
noted difference between the expected and actual behavior
of application”. Bug is defined as “When a defect is
reported and confirmed by development/ design team it is a
Bug”. Issue is defined as “Any variation during the
software development life cycle reported as issue”.

Manuscript received May 25, 2015.
 D.Kavitha, Assistant Professor, Department of Computer Science and
Applications, Nazareth College of Arts and Science, Chennai, India.
d.kavithamoorthy@gmail.com

Wikipedia definition of Bug is: “A computer bug is an
error, flaw, mistake, failure, or fault in a computer program
that prevents it from working correctly or produces an
incorrect result. Bugs arise from mistakes and errors, made
by people, in either a program’s source code or its design”.
[8]

According to IEEE standard 729-1983 a failure is “an
event in which a system or system component does not
perform a required function within specified limits”.
Failures are caused by faults.

A fault (or a bug) is “an accidental condition that causes
a functional unit to fail to perform its required function”.
Failures occur during the execution of a software program.

Defects may occur due to design errors, logic errors or
coding errors. The defect may get introduced in any phase
of the software development namely requirement analysis
(RA), design (SD), coding (SC), testing (ST),
implementation (SI) and maintenance of the system (SM).
Debugging is the process of finding the causes of bugs.
Bug tracking tools are used to track the bugs in the
software project. Defect Report will contain detailed
information’s about the defects.

II. SOFTWARE QUALITY & SOFTWARE
QUALITY ASSURANCE

Software Quality
 IEEE Standard 610.12-1990 [1] defines Software

Quality as: “the degree to which a system, component, or
process meets customer or user needs or expectations...”

Software Quality Assurance
IEEE Standard 610.12-1990 defines
 “A planned and systematic pattern of all actions

necessary to provide adequate confidence that a software
work product conforms to established technical
requirements”.
 “A set of activities designed to evaluate the

process by which software work products are developed
and/or maintained”.

The traditional software quality assurance methods
include testing, reviews, inspections, defect management
models and techniques, such as defect prevention, the
defect management process and root cause analysis
method.

Quality Assurance consists of Auditing and Reporting
functions of management. Software Quality Assurance

Better Defect Analysis and Defect Prevention for Software Process Quality Improvement

112

 involves the total software development process
monitoring and improving the process, making sure that
any agreed upon standards and procedures are followed and
ensuring that problems are found and dealt with. It is
oriented to defect prevention. Quality Assurance differs
from Quality Control in that Quality Control is a set of
activities designed to evaluate the quality of a developed or
manufactured product.

As per Sakthi (2010), “A small amount of effort spent on
quality assurance will save cost in terms of detecting and
eliminating”. Software defects are time consuming and
expensive.

The goal of quality assurance is to provide management
with the data essential to be informed about the product
quality, hence gaining insight and confidence that product
quality is meeting its goals. If quality assurance identifies
problems in the data provided, it is management’s
responsibility to deal with the problems and apply the
required resources to resolve the quality issues. Quality
Assurance modifies development process to prevent the
defects.

According to QAI – Quality Assurance Institute the
defect management process consist of six elements.
 Deliverable base lining ,
 Defect discovery
 Defect prevention,
 Defect resolution
 Process improvement
 Management reporting

Defect discovery describes the techniques used to find

defects. Defect resolution consists of prioritizing and
scheduling the fix, fixing the defect and reporting the
resolution. Defect prevention activity involves the analysis
of defects that were encountered in the past and defining
and implementing actions to prevent the occurrence of
those defects in future projects. Process Improvement -
Process improvement results in changing the existing
quality manuals of Software Development life cycle
process and results with the improved Software
Development life cycle process and documents (Sakthi,
2010).

Software Quality Assurance Activities
The Software Quality Assurance group has

responsibility for quality assurance planning record
keeping, analysis and reporting. They assist the software
engineering team in achieving a high quality end product.

The activities performed by an independent Software
Quality Assurance group are,
 Formulating a quality management plan
 Applying software engineering techniques
 Conducting formal technical reviews

 Applying a multi-tiered testing strategy
 Enforcing process adherence
 Controlling change
 Measuring impact of change
 Performing SQA audits
 Keeping records and reporting

A. Statistical Process Control in Software Quality
Management

The analytical tool from Total Quality Management
TQM is the Statistical Process Control. This quality tool is
useful for detecting the root causes of a defect and for
classifying and prioritizing issues in a well established and
ordered manner. Statistical Process Control is used to
identify the process in control, and identify problem to
make improvement.

B. Statistical Process Control Chart
Control Charts is a graph that monitors process quality.

Control Charts process is within Statistical control limits.
Control limits upper and lower bands of a Control Charts.

Process Variability

One of the successful project management is to achieve
consistency and predictability, but there are always
variations. These variations are due to unclear
understanding of the requirements, changing technology
and so many reasons. Variability refers to how the key
metrics vary over time or over different projects. The
Variability is within “reasonable limits” and an expected
mean value. Lower Control Limit or LCL and Upper
Control Limit or UCL are called as Reasonable limits.
When the Variability exceeds these limits, they have to
understand why this is happens and how to minimize such
variation in future. Sample Statistical Process Control
Chart is shown below.

Fig 1: Statistical Process Control Chart

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-3, Issue-3, May- 2015

113

C. Software Process Improvement
IEEE definition for Process is: “A sequence of steps

performed for a given purpose”.
The definition for Software process is: “The set of

Activities, Methods and Transformations that people use to
Develop and Maintain Software and the Associated
Products, for example: product plans, design documents,
code, test cases and user manuals” (SEI).

Ian Sommerville [3] defines Software Process
Improvement as “The process of making changes to a
software [emphasis added] process with the aim of making
the process more predictable or to improve the quality of its
outputs”. For example, if the aim is to reduce the number
of defects in the delivered software, then they might
improve the process by adding new validation activities.

In Software process improvement, there are five stages
and they are Defect Identification, Defect Classification,
Defect Analysis, Preventive Actions and Process
Improvement.

Fig 2: Process Improvement Workflow

III. DEFECT MANAGEMENT PROCESS

It is defined that, a defect management process as a well-
defined and documented process for preventing, finding,
and resolving defects. Defect management is a traditional
way to see the process of handling defects. Defect
management focuses on preventing defects and resolving
existing defects.

Steps involved in Defect Management Process
1. Identification: This step involves the discovery of

a defect.
2. Categorization: When a defect is reported, it is

assigned to a designation team member to confirm that the
defect is actually a defect as opposed to an enhancement
next step is prioritization.

3. Prioritization: Prioritization is typically based on a
combination of the severity of impact on the user, effort to
fix, along with a comparison against other open defects.

Prioritization is often handled by a formal change control
board. Priority should be determined with representative
from management the customer.

4. Assignment: Once a defect has been prioritized it
is then assigned to a developer or other technician to fix.

5. Resolution: The developer fixes (resolves) the
defect and follows the organizations process to move the
fix to the environment where the defect was originally
identified.

6. Verification: Depending on the environment
where the defect was found and the fix was applied the
software testing team or customer typically verifies that
the fix actually resolved the defect.

A. Defect Identification (Defect Detection techniques)
Defects are found by preplanned activities specifically

intended to find out the defects. Generally defects are
identified at various stages of software life cycle through
activities like Design review, Code Inspection, GUI review,
function and unit testing.

Defect Detection techniques deal with how to find the
faults:

a) Reviews and Inspection
b) Testing.

a) Reviews and Inspection
Software reviews identifies the issues earlier and cheaper

than they could be identified by testing or by defect
detection process.

Review is a form of static testing where people analyze
the project or one of the project’s work products rather than
tools, such as a requirements specification. A review could
be done entirely as a manual activity, but there is also tool
support. Defects detected during reviews early in the life
cycle are often much cheaper to remove than those detected
by running tests on the executing code.

Types of the Reviews
 Code review
 Pair programming
 Inspection
 Walkthrough
 Technical review

Code review is systematic examination (often as peer

review) of computer source code. The team examines a
sample of code and fixes any defects in it. Peer reviews are
composed of software walkthrough and software
inspections. Pair programming is a type of code review
where two persons develop code together at the same
workstation. Inspection is a very formal type of peer
review where the reviewers are following a well-defined

Better Defect Analysis and Defect Prevention for Software Process Quality Improvement

114

process to find defects. Software inspection is a formal
evaluation technique in which requirements, design and
source code are examined to detect defects [6].

Walkthrough is a form of peer review where the author
leads members of the development team and other
interested parties through a software product and the
participants ask questions and make comments about
defects. Technical review is a form of peer review in
which a team of qualified personnel examines the
suitability of the software product for its intended use and
identifies discrepancies from specifications and standards.

b) Testing
Software testing is the process used to help identify the

correctness, completeness, security and quality of
developed computer software. Software testing is “a
process of executing a program on a set of test cases and
comparing the actual results with expected results”. Testing
cannot show the absence of defects, it can only show that
software errors are present.

The Author Ehmer Khan (4), defines software testing as
a process or a series of processes, design to make sure that
computer code does what it was actually design to do and it
doesn’t do anything unintended. Software testing is a set
of activities conducted with the intent of finding errors. It
also ensures that the system is working according to the
specification. White box testing is verification and
validation technique which software engineers can use to
examine their code works as expected.

Different types of testing happening during the software
development are Unit Testing, Integration Testing,
Functional Acceptance Testing, and User Acceptance
Testing.

Unit Testing - Unit testing, also known as component
testing refers to tests that verify the functionality of a
specific section of code, usually at the function level. In an
object-oriented environment, this is usually at the class
level, and the minimal unit tests include the constructors
and destructors.

Integration Testing - Integration testing is any type of
software testing that seeks to verify the interfaces between
components against a software design.

Functional Acceptance Testing - Functional testing
refers to activities that verify a specific action or function
of the code. Functional testing is a quality assurance (QA)
process and a type of black box testing that bases its test
cases on the specifications of the software component
under test.

User Acceptance Testing - Consists of a process of
verifying that a solution works for the user.

Once defects are identified then they are classified using
first level of Orthogonal Defect Classification.

B. Defect Classification (Orthogonal Defect
Classification)

After the defects are identified they are classified using
first level of Orthogonal Defect classifications. An
Orthogonal Defect classification (ODC) is the most
prevailing technique for identifying defects where defects
are grouped into types.

Defects Classification
Software Defects are normally classified as per:
 Severity / Impact (Defect Severity)
 Probability / Visibility (Defect Probability)
 Priority / Urgency (Defect Priority)
 Related Dimension of Quality (Dimensions of

Quality)
 Related Module / Component
 Phase Detected
 Phase Injected

C. Defect Root Cause Analysis

Defect Analysis is using defects as data for continuous
quality improvement. Defect analysis generally seeks to
classify defects into categories and identify possible causes
in order to direct process improvement efforts. The goal of
RCA is to identify the root cause of defects and initiate
actions so that the source of defects is eliminated.

The main goal of Root cause analysis is to identify the
root cause of defects and initiate actions so that the sources
of defects are eliminated. Root cause analysis is a group
reasoning process applied to defect information to develop
organizational understanding of the cause of a particular
class of defects. The analysis should lead to implementing
changes in processes that help prevent defects from re-
occurring.

Members of the software engineering team can give the
best suggestions for how to avoid such defects in future.
Simple data analysis approach is to enter the data into an
Excel sheet. Selected the defect report during the software
maintenance and determined their error cause and root
causes of the defects. There are many possible way to
analyze the root cause of the defect data. The root cause
facilitator is a person who runs the root cause analysis
meeting. The software engineer’s need to be skilled at
meeting processes and dynamics and be familiar with
software development and common defect types. Root
cause facilitator analyzed the error cause of the defect data
during the software maintenance.

D. Defect Prevention
Defect Prevention is an important activity in any

software project. Defect prevention is also an essential part

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-3, Issue-3, May- 2015

115

of software process quality improvement. Defect
prevention is a process of identifying defects, their root
causes, and also preventive measures have been taken to
prevent them from recurring in the future, will lead to the
better quality software product. Defect prevention is one
such technique that is used in this software company and is
required for a level 5 organization.

Defect Prevention can be applied to one or more phases
of the software lifecycle to improve software process
quality. Finding the causes and eliminating them are
equally important. Once the root causes are documented,
finding ways to eliminate them requires another round of
brainstorming. The object is to determine what changes
should be incorporated in the processes so that recurrence
of the defects can be minimized. Monitoring the Defect
Prevention Process is important, does the number of
defects getting decreasing?

Fig: 3 Defect Prevention Cycle: The blocks and
processes in the gray-colored block represent the handling
of defects within the existing philosophy of most of the
software industry – defect detection, Tracking /
documenting and analysis of defects for arriving at quick,
short-term solutions.

The processes that form the integral part of the defect

prevention methodology are on the white background. The
vital process of the defect prevention methodology is to
analyze defects to get their root causes, to determine a
quick solution and preventive action. Most of the activities
of the defect prevention methodology require a facilitator.

The facilitator can be the software development project

leader or any member of the team. The designated defect
prevention coordinator is actively involved in leading
defect prevention efforts, facilitating meetings and
communication among team and management, and
consolidating the defect prevention measures/guidelines.

Fig 3: Defect Prevention Cycle [9]

Defect prevention tries to reduce the number of defects
while producing the software in the software development
life cycle. Defect removal is to detect defects by software
verification or software inspection. The main goal is to
eliminate introduced defects.

Defect prevention based on tools, technologies, process
and standards. Prevention of defects is possible by
analyzing the root causes for the defects. Root cause
analysis can take up two forms namely logical analysis
and statistical analysis. Logical analysis is a human

intensive analysis which requires expert knowledge of
product, process, development and environment. It
examines logical relation between faults (effects) and
errors (causes).

 Statistical analysis is based on empirical studies of
similar projects or locally written projects. Both the
organization and the projects must take specific actions to
prevent recurrence of defects. Some of the actions that are
handled as described in Process Change Management Key
Process Area are: - Goals, Commitment to perform, Ability

Better Defect Analysis and Defect Prevention for Software Process Quality Improvement

116

to perform, Activities performed, Measurements and
analysis and verifying implementations. The organization
sets three goals like defect prevention activities which are
planned, common causes of defects to seek out and to be
identified, common causes of defects to be prioritized and
systematically eliminated.

To improve the software processes and the products
through Defect Prevention activities, these results need to
be reviewed and the actions are identified and addressed.
For the Defect Prevention to be able to perform, as per the
Key Process Area, an organizational level team as well as
the project level should exist. This may include teams from
the Software Engineering.

IV. CONCLUSION

Defect Prevention is an important activity in any
software project. The purpose of Defect Prevention is to
identify the cause of defects and prevent them from
recurring. The process of the defect prevention
methodology is used to analyze the defects to get their root
cause to determine a quick solution and preventive action.
Defect management reduces the cost of development of
software product as previous reports get used to resolve the
defects. Developing a good defect management process
improves the quality of the software.

There are several difficulties involved in managing the
defect but simultaneously it also has many benefits
involved with it. The main being the organization which is
implementing defect management, will have good
reputation from customer. It is beneficial to integrate the
defect management with software development process as
it helps in removing the defects with almost every phase of
development. A well planned defect management process
is the main success factor for implementing software
projects in time and in accordance with the budget. The key
principle of the root cause analysis of a software defects is
to reduce the defects to improve the software quality.

REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Terminology”
Software Engineering Standards Committee of the IEEE Computer
society (1990)

[2] Sakthi Kumaresh, R.Baskaran,(2010), “Defect Analysis and
Prevention for Software Process Quality Improvement”, International
Journal of Computer Applications (0975-8887) volume 8-No.7 October
2010.

 [3] Ian Sommerville (2004), “Software Engineering”, Addison-Wesley,
7th Edition.

[4] Mohd. Ehmer Khan, “ Different Approaches to White Box Testing
Technique for Finding Errors” International Journal of Software
Engineering and Its Applications Vol. 5 No. 3, July, 2011.

[5] P.K. Suri1 , Rajni Rana, “Defect Analysis and Prevention Techniques
for Improving Software Quality”, International Journal of Advanced

Research in Computer Science and Software Engineering, Volume 3,
Issue 7, July 2013.

[6].http://en.wikipedia.org/wiki/Software_quality#Measurement

[7]. http://softwaretestingfundamentals.com/defect/

[8]. http://en.wikipedia.org/wiki/Software_bug
[9]. [Mukesh] Mukesh soni, “Defect Prevention: Reducing costs and
enhancing quality”. February 26, 2010.

D.Kavitha is a Assistant Pprofessor in the
Department of Computer Science and Applications,
Nazareth College of Arts and Science, Chennai,
India. She is M.C.A., M.Phil., (Ph.D).
She is also a Research Scholar ,(BHARATHIYAR
UNIVERSITY), Area of interest is Software
Engineering. Published papers in National and
International conferences and journals. Eight years
of experience in teaching undergraduate as well as
postgraduate students.

