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ABSTRACT- This study presents a deep learning 
solution for detecting road anomalies via a hybrid 
architecture consisting of a Masked Autoencoder 
(MAE) and a Vision Transformer (ViT) model. It 
presented a framework for dual road classification, 
namely an intact road (good) and defected road (bad) 
where defected roads are characterized by anomalies 
such as potholes or cracks. The target road anomaly 
classification model was trained and tested using 
publicly available datasets of road condition images. 
The model demonstrated good feature extraction as well 
as good generalization with a training accuracy of 
99.79% and a test accuracy of 98.29%. Furthermore, we 
integrated the road anomaly detection model into a 
web-application providing real-time road anomaly 
detection, exemplifying the possible benefits of 
applying computer vision and machine learning 
algorithms to improve road maintenance in Nigeria. 

KEYWORDS- Anomaly detection, Deep learning, 
Image processing, Masked autoencoders, Transport safety, 
Vision Transformers 

I. INTRODUCTION
Poor condition of roads is one of the significant issues in 
transportation engineering and the possible negative 
impacts on safety, comfort, and overall experience of road 
users. Roads in a bad state degrade the vehicle, increase 
the risk of accidents, and increase the maintenance costs of 
road agencies [1]. To improve roadway safety and better 
manage infrastructure requires a validated, reliable non-
intrusive, and less costly alternative to the traditional 
methods of manual inspections. As the use of computer 
vision, coupled with machine learning techniques has 
emerged recently as a unique way of inspecting road 
anomalies, automatic systems that identify road faults can 
improve operations and have greater effects as they reduce 
repair costs and make roads safer for traffic as discussed in 
[2] and [3]. The systems identify road faults well, also in
areas that are inaccessible or risky. It is faster and improved 
compared to manual checking by humans. Creating a 
reliable system to identify road faults can contribute 
considerably to traffic safety. It reduces expenses from 
damage of vehicles and enhances travel. Conversely, 
traditional methods of identifying faults by hand are time-

consuming and involve a lot of work, and they are prone 
to errors. This is why there has been interest in automatic 
systems that employ vision and machine learning to 
identify and categorize faults. 
Despite the significant advances that have taken place in 
research on road anomaly detection, issues still crop up, 
especially with ensuring detection system accuracy and 
reliability [2]. Real-time detection is also essential in 
delivering timely alerts for both drivers and road 
authorities [4]. While automated systems have significant 
potential for improved road safety and reduced costs of 
maintenance, further research is necessary for improving 
their resilience, especially in real-world setups [5]. 
Traditional machine learning models, like CNNs, have 
demonstrated promise in the detection of road anomalies. 
Nonetheless, they are often unable to detect complex 
patterns and contextual information in images, thus 
diminishing their performance in certain situations. 
Masked Autoencoders (MAE) is a further developed 
mechanism for feature learning that involves training the 
model on predicting the missing parts of an image, forcing 
the model to learn richer and more significant features. 
This feature supports the system in detecting minute road 
imperfections, even for those that are not directly 
observable in images. This is especially beneficial in the 
detection of small, localized imperfections, like potholes 
or fissures, that are hard to detect with traditional 
approaches [16] 
In numerous applications of computer vision, Vision 
Transformers (ViTs) have been shown to perform 
exceptionally, particularly with big and complicated 
data. While CNNs, on the contrary, extract local 
features, the ViTs are able to extract universal 
contextual relations in an image since they process the 
image entirely in parallel. It is for this reason that the 
ViTs are appropriately suited for detecting large-scale 
road anomalies that require spatial relations, for 
example, the progress of cracks or the interaction of 
different types of damage [17]. The combination of 
MAE for feature learning and the use of ViTs for 
anomaly detection and image classification is a 
stronger system that rectifies the deficiencies of 
previous methods. Below are the primary contributions 
of the research: 
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• Road Anomaly Detection Framework Development 
using Deep Learning Algorithm: This system applies 
Masked Autoencoders (MAEs) for feature learning and 
uses Vision Transformers (ViTs) for anomaly detection, 
providing a mechanism for detecting faults in Nigerian 
roads. This is an improvement over the traditional 
methods in that it increases the effectiveness and 
precision in detecting road anomalies. 

• Real-time web-based road monitoring system: The 
proposed deep learning frameworks are incorporated in 
a real-time system in order to identify road irregularities 
in real time. This system provides timely intervention by 
road maintenance authorities and facilitates effective 
management of road safety. 

• Overall performance assessment: The system is tested on 
different machine learning criteria in order to consider its 
reliability, stability, and feasibility in real-world large-
scale road repair activities. 

II.   REVIEW OF RELATED WORKS 
Machine learning and computer vision have also been 
investigated in a number of studies for the detection of 
irregularities on roads. For instance, Ramesh et al.[6] 
applied deep learning models like MobileNet, Inception-
v3, and YOLOv5 for real-time detection of potholes with 
impressive accuracy. Road surface flaws were found to be 
a significant risk for vehicle integrity and traffic safety in 
another study by R. Bibi et al. [5]. These flaws are made 
worse by climate change, subpar building materials, and 
growing traffic volumes. In order to enable autonomous 
identification of traffic irregularities, the authors presented 
a system that combines deep learning (DNN) algorithms 
with in-vehicle sensors. The technology enables 
autonomous vehicles to identify and categorize road 
imperfections, including potholes, cracks, and bumps, and 
relay this information to neighboring vehicles by utilizing 
Edge AI and vehicular ad hoc networks (VANETs). Using 
publicly available information, experimental results 
showed that models such as ResNet-18 and VGG-11 were 
very accurate in identifying different types of road surface 
conditions. 
Kim et al. [7] divided automated pothole detection systems 
into vision-based, vibration-based, and 3D reconstruction-
based techniques, highlighting how deep learning can 
improve the detection's precision. Likewise, Tahir et al [1] 
proposed FactorNet, a slim deep learning architecture, that 
was found to outperform Detectron2 in terms of detection 
efficiency. Furthermore, research has examined sensor-
based and hybrid detection methods, for example, Ben-
Shoushan & Brook [8] combined thermal and RGB 
imagery with YOLOv5 CNN, enhancing pothole detection 
in poor illumination conditions. Ramesh et al. [9] designed 
a cloud-based system with a combination of YOLOv5 and 
LSTM for tracking road conditions with smartphone 
sensors. Hassan et al. [10] created a predictive 

maintenance system by applying R-CNN in analyzing 
large-scale images of roads in Norway. 
Nonetheless, in tackling harsh conditions, Bucˇko et al.  
[11] proved YOLOv3's performance in the detection of 
potholes in low-light and harsh weather conditions. 
Salaudeen & Celebi [12] employed the image 
enhancement with the use of an ESRGAN-based algorithm 
in upgrading pothole detection in complicated conditions. 
Jakubec et al. [13] use of CNN-based models in relation to 
pothole spotting in various real-world conditions is 
investigated in this manuscript. Contemporary Region-
Based CNN (R-CNN) as well as You Only Look Once 
(YOLO) variants are some of the models tested. Under 
conditions of rain, evening, night, and intense sunshine, the 
YOLO models had faster learning rates and enhanced 
detection precision. On the other hand, R-CNN models 
performed better in conditions with poor visibility, mostly 
during night. They contribute to the result of the emerging 
structure in the literature, as well as in aiding in the choice 
of all deep models suitable for road surface anomaly 
detection in varied environments. 
In Nigeria, for instance, Ezeibe et al. [14] in their research 
in underscored the importance of road transport in the 
social and economic environment, while potholes were 
determined to be the leading cause of accidents. Their 
research underscored the importance of upgraded detection 
systems for tackling the recognition of speed limit signs 
and abandoned road humps. Potluru et al. [15] proposed a 
new framework, an algorithm that applied a hybrid 
technique for road anomaly detection employing the Swin 
Transformer and YOLOv8. The Swin Transformer applies 
a shifting window-based self-attention mechanism with an 
accurate achievement rate of 97.64% while YOLOv8 was 
surpassed by the Deep Convolutional Neural Network 
(DCNN) with a 98.75% achievement rate. Their research 
identifies that while both models are performing, the 
combination of DCNN-YOLOv8 proves stronger in terms 
of robustness and precision, notably in real-world 
applications. This research reaffirms the potential for high-
end neural models in upgrading autonomous road 
infrastructure monitoring and presents a promising avenue 
for future intelligent transportation systems. 

III.   METHODOLOGY 
The research uses a sequential, iterative pipeline of data 
gathering, preparation, modeling, testing, and 
deployment as shown in Figure 1. Road images were 
obtained, inspected, and split into training and testing 
sets. A hybrid structure of Masked Autoencoder (MAE) 
for feature learning and a Vision Transformer (ViT) for 
categorization was employed. The model was trained 
and tested with its performance measured in terms of 
accuracy, precision, recall, and F1-score. Deployment 
in web-based real-world applications is in the pipeline 
to facilitate real-time road anomaly detection. 
 

 
Figure 1: General Pipeline of the Proposed System 
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A. System Design 
The proposed Road Anomaly Recognition System uses an 
integrated deep learning network, as depicted in Figure 2. 
It integrates Masked Autoencoder (MAE) and Vision 
Transformer (ViT). The MAE is used for unsupervised 
feature learning by predicting masked areas in input road 
images and permitting the model to learn influential 
semantic and structural features that are necessary in 
identifying road faults (He et al., 2022) in [16]. The ViT 

receives this information and is very efficient in detecting 
global spatial relationships and dependencies that runs 
through the image (Dosovitskiy et al., 2021) in [17]. This 
integration enhances the system's ability in detecting hard-
to-detect abnormalities with high precision and 
generalization, with examples being potholes and other 
road faults. The transformer-based methodology is suitable 
for real-time applications in intelligent transportation 
systems since it supports scalable and efficient processing. 
 

 
Figure 2:  Mae-Vit Hybrid Road Anomaly Detection Framework 

B. Masked Autoencoders 
For this research, a DeepConvAutoencoder was employed 
for unsupervised representation learning and 
reconstruction of images with applications in anomaly 
detection for roads. The model consists of two main 
components, an encoder that compresses the input to a 
small latent representation and a decoder that reconstructs 
the input from the resultant representation. Assuming a 
kernel size of 3×3, stride = 2, and padding = 1, the 
encoder's convolution with ReLU activation in its four 
layers gradually reduces the spatial dimensions of the 
image but enhances its feature depth from three channels 
(RGB) alone to 128 channels. This arrangement enables 
the network to learn spatially localized as well as 
hierarchal representations of the feature. The decoder 

upsamples the feature maps and reconstructs the input 
image by imitating this topology with ConvTranspose2d 
layers. For normalized image data, its last layer of output 
restricts pixel values to the range of [0,1] with a Sigmoid 
activation. 
Mean squared error (MSE) loss function is employed for 
model training in order to minimize pixel-to-pixel variance 
between the input and output images. For the purpose of 
optimization, the Adam Optimizer is employed, and the 
learning rate is 0.003. The architecture of the overall model 
is illustrated in Table 1, and a visualization of the behavior 
of the model during training is presented in Figure 3, 
highlighting a clear reduction in the reconstruction error 
with every 10 epochs of training, demonstrating successful 
convergence.  

Table 1: Architecture of the Deep Convolutional Autoencoder 

Component Layer Type Output 
Channels 

Kernel 
Dimension 

Stride Padding Activation 

Encoder Conv2d 16 3×3 2 1 ReLU 
 Conv2d 32 3×3 2 1 ReLU 
 Conv2d 64 3×3 2 1 ReLU 
 Conv2d 128 3×3 2 1 ReLU 

Decoder ConvTranspose2d 64 3×3 2 1 ReLU 
 ConvTranspose2d 32 3×3 2 1 ReLU 
 ConvTranspose2d 16 3×3 2 1 ReLU 
 ConvTranspose2d 3 3×3 2 1 Sigmoid 
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Figure 3: Training loss curve of the deep convolutional autoencoder over 10 epochs.  

The steady drop in the loss indicates that the model is learning well and improving over time.

C. Vision Transformer 
The model employed in the proposed system incorporated 
the Vision Transformer (ViT) - google/vit-base-patch16-
224-in21k pretraining architecture - for predicting road 
surface conditions in terms of two classes, namely, good 
(intact) and bad (defective). This pre-trained transformer 
model is trained on the ImageNet-21k dataset and further 
fine-tuned on the road anomaly dataset in order to learn 
high-level and discriminative visual features. Every input 
image 𝑥𝑥 ∈ 𝑅𝑅(𝐻𝐻×𝑊𝑊×𝐶𝐶) is divided into a set of fixed-size, 
non-overlapping patches of size 16 𝑥𝑥 16. For a resized 
image of size 224 x 224, this means we have 𝑁𝑁 =
224×224
16×16

= 196 patches. The individual patches are 
projected linearly into a feature space of size D, with a 
learnable classification token being added to the sequence. 
Positional embeddings are added in order to preserve the 
spatial structure as shown in Equation 1, 

𝑧𝑧0 = �𝑥𝑥cls; 𝑥𝑥𝑝𝑝1𝐸𝐸; 𝑥𝑥𝑝𝑝2𝐸𝐸; … ; 𝑥𝑥𝑝𝑝𝑁𝑁𝐸𝐸� + 𝐸𝐸pos          (1)     

where 𝑥𝑥𝑝𝑝1 is the ith image patch, 𝐸𝐸 ∈ 𝑅𝑅�𝑃𝑃2⋅𝐶𝐶�×𝐷𝐷 is the linear 
projection matrix, and 𝐸𝐸pos are learnable positional 
embeddings. A series of Transformer encoder layers is 
used to process this embedded sequence. This embedded 
sequence of images is processed in a sequence of 
Transformer encoder layers. Each of the layers consists of 
a Multi-Layer Perceptron (MLP) and Multi-Head Self-
Attention (MHSA) both of which are preceded by Layer 
Normalization and followed by residual connections. The 
forward pass in each of the encoder layers is described in 
Equation 2, 

𝑧𝑧𝑙𝑙′ = MSA�LN(𝑧𝑧𝑙𝑙−1)� + 𝑧𝑧𝑙𝑙−1  ,        

𝑧𝑧𝑙𝑙 = MLP�LN(𝑧𝑧𝑙𝑙′)� + 𝑧𝑧𝑙𝑙′            (2)  

where l is the index of the layer. Following the last layer, 
the output that corresponds with class token 𝑧𝑧𝐿𝐿0 is taken, 
then passed through a linear classification head followed 
by a sigmoid activation function for binary classification 
as presented in Equation 3. 

𝑦𝑦� = 𝜎𝜎(𝑤𝑤𝑇𝑇𝑧𝑧𝐿𝐿0 + 𝑏𝑏) =
1

1 + 𝑒𝑒−�𝑤𝑤𝑇𝑇𝑧𝑧𝐿𝐿
0+𝑏𝑏�

                  (3) 

Here, the weight and bias of the classification layer are 
represented by w and b. Equation 4 presents the Binary 
Cross-Entropy loss function is used in order to train the 
model: 

𝐿𝐿 = −�𝑦𝑦 log𝑃𝑃 (anomaly|𝑥𝑥)
+ (1
− 𝑦𝑦) log�1 − 𝑃𝑃(anomaly|𝑥𝑥)��         (4) 

where y is the true label (0 for normal roads, 1 for 
anomalies) and 𝑃𝑃(anomaly|𝑥𝑥) as the predicted probability 
of anomaly by the model. Equation 5 presents 
approximations of the first and second moments of the 
gradients, upon which the Adam optimizer decides the 
learning rate for each parameter. 

𝑤𝑤 = 𝑤𝑤 − η ⋅
𝑚𝑚𝑡𝑡

�𝑣𝑣𝑡𝑡 + ϵ
         (5) 

Where η is the learning rate, while first and second 
moments estimates are 𝑚𝑚𝑡𝑡 and 𝑣𝑣𝑡𝑡 respectively, and is a 
small quantity for numerical stability. All images are 
resized to 224 x 224 x 3 with bilinear interpolation to be 
compatible with the expected input of ViT’s. For 
intermediate output of varying channel depth from masked 
autoencoder, 1×1 convolutional projection layer is 
employed for conversion into 3 channels.  
 
 

D. Evaluation Metrics 
The system's capacity for detecting road irregularities is 
quantified by applying conventional measures of 
classification that include accuracy, precision, recall, and 
F1-score as shown in Figures 6, 7, 8, and 9 respectively. 

Accuracy =
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁
           (6) 

Precision =
𝑇𝑇𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃
                                   (7) 
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Recall =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
                                        (8) 

𝐹𝐹1 = 2 𝑥𝑥 
Recall x Precision 
Precision + Recall

                         (9) 

Where TN is the number of properly identified normal 
roads (true negatives), FP is the number of wrongly 
identified normal roads as anomaly (false positives), FN is 
the number of anomaly roads wrongly identified as normal 
(false negatives), and TP is the number of anomaly roads 
properly identified as anomaly (true positives). 

IV.   EXPERIMENTAL DESIGN 
A. Dataset Description 
The dataset consists of 1,755 road images gathered from a 
public repository, labeled as normal and anomalous roads. 

Suitable for preliminary training, its small size and limited 
variability can, however, limit the model’s capacity for 
generalizing on diverse road conditions due to variability 
in resolution, environmental conditions, and texture of 
surfaces. To minimize these challenges, data 
augmentation methods were employed, such as geometric 
transforms (flipping, rotation, cropping) for improved 
variability in spatial terms, and photometric transforms 
(brightness, contrast, saturation) for illumination 
adaptation improvement. Figure 4 shows a subset of the 
acquired dataset. The dataset was divided into 80% for 
training and 20% for testing for model development and 
verification, as indicated in Figure 5. Notwithstanding the 
foregoing, adding road images from different 
geographically widespread regions of the world would 
further enhance the generalization and real-world 
performance of the model.  

 
Figure 4: Dataset sample 

 
Figure 5: Dataset splitting

Therefore, there is an organized preprocessing pipeline 
that is employed in order to process the images for deep 
models. The unwanted regions of the image are cropped, 
with the region of interest being the road surface, as in 
Equation 9. 

       Xcropped = X[crop_coordinates]                          (9) 

Labels are encoded as binary values (0 for normal, 1 
for anomalous) 

𝑦𝑦𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �0, 𝑛𝑛𝑛𝑛 𝑎𝑎𝑛𝑛𝑛𝑛𝑚𝑚𝑎𝑎𝑎𝑎𝑦𝑦
1, 𝑎𝑎𝑛𝑛𝑛𝑛𝑚𝑚𝑎𝑎𝑎𝑎𝑦𝑦 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑            (12)  

B. Simulation 
The platform for the training environment was Python in 
Google Collaboratory, on a system (2.6GHz, 12GB RAM, 
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500GB storage). Installed on this was Anaconda and 
Visual Studio Code (VS Code), on Microsoft Windows 10, 
with a web browser. During the setup of the project, the 
system installed the latest version of important machine 
learning libraries on it, which included OpenCV for image 
processing, PyTorch for deep learning, Transformers for 
processing pre-trained models, and NumPy for numerical 
computations. Data preprocessing and visualization as 
well as model evaluation dependencies were also installed. 

V.   PERFORMANCE EVALUATION 
A. Model Performance 
The proposed hybrid model based on a Masked 
Autoencoder and a Vision Transformer, was tested for its 

robustness in categorizing road conditions into two 
classes: good roads (intact) and bad roads with potholes or 
cracks. As seen in Figure 4, the process of training 
improved both the training and the test accuracy. The 
model reached a training accuracy of 99.79%, while the 
test accuracy was 98.29%, reflecting both efficient feature 
extraction and learning from images of the road surface. 
Additionally, the test loss kept declining with training, and 
there was little or no gap in the difference between the train 
and the test metrics, indicating excellent generalization 
capacity. Early stopping was enforced at epoch 16, 
maintaining model stability and avoiding overtraining past 
the optimal point of convergence. 

 
Figure 6: Training and evaluation curves of the proposed hybrid Mae-Vit model 

Table 2 shows the performance analysis of the model by 
classifying roads as "Good" or "Bad,". The model recorded 
an impressive performance with an overall validation 
accuracy of 98%, meaning it correctly predicts road 
conditions in 98% of cases. Precision was 97% for good 
roads and 100% for bad roads. Recall for bad roads was 
96% and 100% for good roads, F1-score for bad roads was 
98% and 99% for good roads.  The high-performance 
metrics recorded reflects robust overall performance of the 
model. 

Table 2: Model Performance Analysis 

Metric Good Roads Bad Roads 
Precision 97% 100% 

Recall 100% 96% 
F1-score 99% 98% 
Accuracy  98% 

B. Error Analysis 
In order to analyze the performance of the classification 
even better, Figure 7 presents the confusion matrix where 
the model has classified 144 bad roads and 201 good 
roads accurately, 6 bad roads are wrongly classified as 
good (false positives) and this might lead to undetected 
road faults, however, there are no good roads classified 
as bad roads (false negatives). 

 
Figure 7: Confusion matrix for road condition 

classification 

C. Deployment 
In the final phase of the research, the trained model is 
deployed as a web-based application that is able to identify 
road anomalies in real-time, as illustrated in Figure 8. The 
users are able to upload images of the road surfaces, and 
the system classifies them as "good" or "bad" (normal or 
abnormal). The tool for achieving this is created with 
HTML, CSS, and JavaScript for the front-end, and Flask 
for the back-end for handling image uploads, processing, 
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and serving model predictions. The time for a response by 
the server, from the point the user uploads an image until 
the time the result of the classification is displayed, 
typically ranging from a few hundred milliseconds to a few 
seconds, depending on the performance of the server, size 
of the image, and processing by the model. Once the model 
has been loaded upon initialization, the response for 
successive requests is faster, as the model does not have to 
be loaded again. The tool was also tested with real-road 
images, which had different illumination conditions, 

quality, and road surfaces. The tests revealed that the 
model is able to perform well on new images, maintaining 
high classification accuracy. The user interface was 
smooth, with images being uploaded and displayed along 
with the outcome promptly, and the tool is a valuable asset 
for road maintenance teams. The tool's capacity for 
classifying road images in real-time, together with its 
friendly interface and stable performance on different 
images, enables the road maintenance teams to respond 
promptly to road abnormalities. 

 

Figure 8: Web Application illustrating the road anomaly detection system user interface,  
presenting real-time road condition analysis with identified anomalies 

VI.   DISCUSSION 
The model, built on masked autoencoders and vision 
transformers, has demonstrated solid performance in 
detecting road anomalies. Detailed in Table 2, the model 
had a precision of 97% on good roads and 100% on bad 

roads, showcasing capability in accurately separating road 
conditions. Recall on bad roads was 96%, supporting the 
effectiveness of the model in detecting faulty roads with 
minimal false negatives. F1-score on bad roads was 98%, 
indicating a well-balanced performance on precision and 
recall, especially for detection of faults. The model 
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performed equally well in the case of classifying good 
roads, with precision of 97%. This balanced performance 
on both classes supports that the model is suitable for real-
world applications in which properly classifying good and 
bad roads is critical. 
A deeper examination of the confusion matrix further 
shows that 144 bad roads were classified accurately along 
with 201 good roads. It also incorrectly classified 6 bad 
roads as good (false negatives), potentially resulting in 
undetectable road flaws. Of interest is that there were no 
false positives, i.e., there were no good roads classified as 
bad. The misclassifications indicate avenues of 
improvement, specifically in the ability of the model to 
separate intact roads from faulty roads in different 
conditions. While the model shows high performance, 
there is potential for improvement, specifically in the 
optimization of inference speed in order to accommodate 
real-time applications in mobile platforms. Implementing 
the model on mobile devices can dramatically improve its 
usability in field activities. Also, the use of multiple 
models or hybrid methods may further enhance the model's 
precision and resilience. 
Now deployed as a web-based tool, the system allows for 
real-time road anomaly detection, with a user-friendly 
HTML front-end and a Python-based backend that allows 
for efficient decision-making. All of these serve users with 
a simple-to-use interface for tracking the conditions on the 
road and decision-making through the outputs of the 
model. Future efforts can be on the integration of multi-
model frameworks for increased precision and for 
expanding the scope of the model. 

VII.   CONCLUSION 
In this work, a road anomaly detection model with masked 
autoencoders and vision transformers was proposed, with 
high detection accuracy for road defects. The model 
showed excellent precision and recall values, specifically 
for bad roads, achieving an accuracy of 98% and an F1-
score of 98%. The confusion matrix indicated a high 
number of properly classified roads, with suggestions for 
improvement, including less false negatives in detecting 
faulty roads. The easy integration of the model as a web-
based tool allows for real-time detection of road 
anomalies, with an easy user interface for tracking road 
conditions. This system provides useful insights on how 
road conditions can be improved in terms of road safety 
and road maintenance. In the future, we will be optimizing 
the inference speed of the model for mobile applications, 
investigate hybrid methods for further improvement in 
terms of accuracy, as well as combining multiple models 
for enhanced robustness. Generally, the model is 
promising for use in real-world applications in the 
monitoring of road conditions, with further potential 
refinement for improved accuracy and effectiveness in 
actual applications. 

CONFLICTS OF INTEREST 
The authors declare that they have no conflicts of interest. 

 

 

REFERENCES 
[1] T. Tahir, H. Hassam, J. Choi, and E.-S. Jung, "Lightweight 

deep learning model for road pothole detection," Applied 
Intelligence, vol. 56, pp. 1234–1245, 2022. 

[2] K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P. Yang, and 
S. W. Baik, "Automated Road defect and anomaly detection 
for traffic safety," Sensors, vol. 23, no. 12, p. 5656, 2023. 
Available from: https://doi.org/10.3390/s23125656 

[3] M. M. Q. U. H. T. Anwar, S. M., "Deep learning for road 
anomaly detection: A survey," arXiv preprint, 2022. 

[4] A. Martinez-Ríos, M. R. Bustamante-Bello, and L. A. Arce-
Saénz, "A review of road surface anomaly detection and 
classification systems based on vibration-based techniques," 
Applied Sciences, vol. 12, no. 19, p. 9413, 2022. Available 
from: https://doi.org/10.3390/app12199413 

[5] R. Bibi, Y. Saeed, A. Zeb, T. M. Ghazal, T. Rahman, R. A. 
Said, S. Abbas, M. Ahmad, and M. A. Khan, "Edge AI-Based 
Automated Detection and Classification of Road Anomalies 
in VANET Using Deep Learning," Computational 
Intelligence and Neuroscience, vol. 2021, Article ID 
6262194, 2021. Available from: 
https://doi.org/10.1155/2021/6262194 

[6] R. Basher, A. R. Ayon, A. Gharamy, A. A. Zayed, and M. S. 
Y. Ibna Zaman, "Real-time pothole detection using deep 
learning models: Mobilenet, Inception-V3, and YOLOv5," 
B.Sc. thesis, Dept. of Computer Science and Engineering, 
BRAC University, Dhaka, Bangladesh, 2022. Available 
from: https://tinyurl.com/hutawa5r 

[7] Y.-M. Kim, Y.-G. Kim, S.-Y. Son, S.-Y. Lim, B.-Y. Choi, 
and D.-H. Choi, "Review of recent automated pothole-
detection methods," Applied Sciences, vol. 12, no. 11, p. 
5320, 2022. Available from: 
https://doi.org/10.3390/app12115320 

[8] R. Ben-Shoushan and A. Brook, “Fused Thermal and RGB 
Imagery for Robust Detection and Classification of Dynamic 
Objects in Mixed Datasets via Pre-Trained High-Level 
CNN,” Remote Sensing, vol. 15, no. 3, p. 723, 2023. 
Available from: https://doi.org/10.3390/rs15030723 

[9] Ramesh, D. Nikam, V. N. Balachandran, L. Guo, R. Wang, 
L. Hu, G. Comert, and Y. Jia, “Cloud-Based Collaborative 
Road-Damage Monitoring with Deep Learning and 
Smartphones,” Sustainability, vol. 14, no. 14, p. 8682, 2022. 
Available from: https://doi.org/10.3390/su14148682 

[10] M. U. Hassan, O.-M. H. Steinnes, E. G. Gustafsson, S. 
Løken, and I. A. Hameed, “Predictive Maintenance of 
Norwegian Road Network Using Deep Learning Models,” 
Sensors, vol. 23, no. 6, p. 2935, 2023. Available from: 
https://doi.org/10.3390/s23062935 

[11] Bučko, E. Lieskovská, K. Zábovská, and M. Zábovský, 
"Computer vision-based pothole detection under challenging 
conditions," Sensors, vol. 22, no. 22, p. 8878, 2022. Available 
from: https://doi.org/10.3390/s22228878 

[12] H. Salaudeen and E. Çelebi, "Pothole detection using image 
enhancement GAN and object detection network," 
Electronics, vol. 11, no. 12, p. 1882, 2022. Available from: 
https://doi.org/10.3390/electronics11121882 

[13] M. Jakubec, E. Lieskovská, B. Bučko, and K. Zábovská, 
“Comparison of CNN-Based Models for Pothole Detection 
in Real-World Adverse Conditions: Overview and 
Evaluation,” Applied Sciences, vol. 13, no. 9, p. 5810, 2023. 
Available from: https://doi.org/10.3390/app13095810 

https://doi.org/10.3390/s23125656
https://doi.org/10.3390/app12199413
https://doi.org/10.1155/2021/6262194
https://tinyurl.com/hutawa5r
https://doi.org/10.3390/app12115320
https://doi.org/10.3390/rs15030723
https://doi.org/10.3390/su14148682
https://doi.org/10.3390/s23062935
https://doi.org/10.3390/s22228878
https://doi.org/10.3390/electronics11121882
https://doi.org/10.3390/app13095810


 
International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 

 

Innovative Research Publication     187 
 

[14] Ezeibe, C. Ilo, C. Oguonu, A. Ali, I. Abada, E. Ezeibe, C. 
Oguonu, F. Abada, E. Izueke, and H. Agbo, “The impact of 
traffic sign deficit on road traffic accidents in Nigeria,” 
International Journal of Injury Control and Safety 
Promotion, vol. 26, no. 1, pp. 1–9, 2018. Available from: 
https://doi.org/10.1080/17457300.2018.1456470 

[15] S. S. Potluru, R. Mohammad, and R. Mande, "Road anomaly 
detection utilizing Swin transformer and deep convolutional 
neural networks with yolov8," in Innovations in 
Computational Intelligence and Computer Vision, Springer, 
2024, pp. 375–393. Available from: 
https://link.springer.com/chapter/10.1007/978-981-97-6992-
6_28 

[16] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, 
"Masked autoencoders are scalable vision learners," in 
Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), 2022. Available 
from: https://tinyurl.com/52bnm4z4 

[17] Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. 
Zhai, T. Unterthiner, ... & N. Houlsby, "An image is worth 
16x16 words: Transformers for image recognition at scale," 
International Conference on Learning Representations 
(ICLR), 2021. Available from: 
https://arxiv.org/pdf/2010.11929/1000 

https://doi.org/10.1080/17457300.2018.1456470
https://link.springer.com/chapter/10.1007/978-981-97-6992-6_28
https://link.springer.com/chapter/10.1007/978-981-97-6992-6_28
https://tinyurl.com/52bnm4z4
https://arxiv.org/pdf/2010.11929/1000

