

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-1, January 2021
 https://doi.org/10.21276/ijircst.2021.9.1.3

Article ID D10963, Pages 15-19
 www.ijircst.org

Innovative Research Publication 15

A Framework for Modeling Non-Functional Requirements for

Business-Critical Systems

Sameer S Paradkar

Enterprise Architect, ATOS, Architecture Group, Business & Platform Solutions, Mumbai, India

Correspondence should be addressed to Sameer S Paradkar; sameer.paradkar@atos.net

Copyright © 2021 Made Sameer S Paradkar. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Proper definition and implementation of

NFRs is critical. In case they are Over-specify, then the

solution may be too costly to be viable; in case they are

underspecified or underachieve them, the system will be

inadequate for its intended use. An adaptive and

incremental approach to exploring, defining, and

implementing NFRs is vital for the successful delivering of

NFRs. NFRs are not product backlog items. The constraints

on development that limit degree of design freedom while

building system. These constraints are articulated in the

acceptance criteria for multiple product backlog items. For

e.g., SAML-based Single Sign-on - SSO is a requirement
for the product. SSO is a functional requirement, while

SAML is the constraint. In that sense, any backlog item

building sign-on functionality would reference the SAML

constraint in its acceptance criteria. The sections that follow

describe the phases of NFR journey from discovery to

deployment for a large complex business critical systems

including the NFR modelling framework.

KEYWORDS- NFR-Non-Functional Requirements, NFR

Framework, NFR Modelling, NFR Methodology

I. INTRODUCTION

In terms of the lifecycle of NFRs, this paper outlines an
NFR framework that describes all activities starting from

elicitation, discovery, requirement definition, architecture

and design, implementation, monitoring, QA, sizing and

trade-off analysis of NFRs. In particular, business

constraints identified during business analysis are used as

input and refined further to define nonfunctional

requirements during requirements definition in subsequent

phases. NFRs are one of the key aspects to derive a

comparison among competing software systems. NFRs such

as performance, reliability, maintainability, security,

accuracy, etc. and this has to be handled at the early stage of
software development along with the functional

requirements. Eliciting NFRs is considered one of the

challenging aspects in requirement analysis. Although there

are well-developed techniques for eliciting functional

requirements, there is a lack of elicitation methodology for

NFR and there is limited consensus pertaining to the

techniques for NFR. In the software development life cycle,

requirement elicitation is one of the most knowledge-

intensive activities. Therefore, the elicitation technique has

to be designed in manner that it will interact closely with

the stakeholders. A major challenge of NFR is the trade-off

analysis and sizing of NFRs. This paper proposes a

framework approach that can be leveraged for all critical

phases of NFRs starting from discovery to deployment.

II. RELATED WORK

[1] This Paper focuses on Non-Functional Requirements

(NFR) for IT and IT-enabled business services and

proposes the creation of enterprise architecture artifacts

specifically addressing NFR.

[2] This in-progress paper, we have elicited NFRs with a

systematic approach of a system which is Point of Sale

system.
[3] This paper proposes an approach to model non-

functional requirements in telecommunication systems

and the identification of issues to be considered in

modelling those requirements.

[4] This paper provides a model-based approach for

enabling automatic software management in dynamic

systems. By modeling nonfunctional requirements and

capabilities we can determine valid configurations and

provide a basis for reconfiguration and optimization of

configurations.

[5] In this paper, suggests an extension to BPMN
technique allowing the business constraints and NFRs

to be modeled during the early requirements

engineering phase.

[6] This paper presents the modelling and analysis of

response time performance aspects leveraging the

formal design analysis framework – FDAF.

[7] In this paper presents a novel approach for specifying

non-functional requirements as constraint systems over

the space of models. The approach, is based on

structured programming and allows requirements to be

specified independently from each other and elicitated
together.

[8] The research aims to promote the use of existing NFR

models and integrate them into the early phases of the

software life cycle in a systematic way to overcome the

stated limitations of the existing research.

[9] This paper presents the NoFun language for stating

system quality in the framework of the ISO-IEC quality

standards.

[10] This paper proposes a Control Case approach to record

and model nonfunctional requirements.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 16

III. NFR MODELLING – PROBLEM CONTEXT

Traditional IT systems largely deal with transaction loads

originating from within the organization, accommodating

demands generated by hundreds or perhaps thousands of

users. The evolutionary expansion due to the internet has

placed a heavy demand on non-functional requirements for

business critical solutions. While the expected response

times, reliability, and availability may have remained

largely constant, the magnitude of users has increased

significantly; from several thousand into millions of users.

In view of the growing transactional demands on business

critical solutions, the nonfunctional aspects of an

architecture are increasingly important, motivating the need

to manage these requirements throughout the life cycle of

systems development. The rate of project failure increases

due to insufficient NFR gathering at the proper stage. NFRs

are to be treated as the constraints of the system which are

needed to satisfy the customers. In many cases customers’

expectations are un-fulfilled due of the inadequacy of the

business system properties. The time and cost for software

development can be brought down by giving critical

importance to NFRs. Typically, customers may not know

the constraints of system in the early stage of the

development process. In a complex system, NFRs are vital

and critical. The system can be at risk if NFRs are neglected

during the system development. As the complexity of

software is ever increasing and customers are focusing

critically on the quality of software, NFR is no longer a

secondary option in the requirements management process.

IV. NFR MODELLING - METHODOLOGY

 NFRs are the constraints on the system and these

constraints are for development and deployment processes.

The quality requirements are also known as NFRs. These

typically include availability, performance, reliability,

usability, modifiability, performance, security, flexibility,

etc. While functional requirements are gathered at an early

stage, ignorance of NFRs leads to project failure. A

common problem is that often stakeholders are unaware of

the system NFR requirements. Although there are standard

definitions of functional requirements, there is a lack of

well-formed definition of NFR. To formally specify and

characterize the NFRs are very much harder, because NRFs

vary in different circumstances. Sometimes both functional

and NFRs are mixed up and ambiguity arises differentiating

between them. Since NFRs are linked to functional

requirements, they create conflicts among stakeholders, but

the later will increase the cost of the system which is

associated with NFRs. For the lack of domain knowledge,

one will not get adequate NFRs, besides it is not even

certain which NFR will be taken into consideration. NFR is

not equally considered as functional requirement in

software development [1,2,3,6,8]. The next paragraph

describes the different stages of NFRs Life Cycle. Interms

of the additional deep dive details refer to table NFR

framework table that follows this section.

A. Discovery (Elicitation)

As a first step, it is important to define the hierarchy of the

NFRs - Non-Functional Requirements and arrive at a

consolidated catalogue of the NFR, and FURPS+

methodology is one of the main frameworks that is widely

leveraged in the software industry for the NFR definition:

FURPS+ stands for Functionality, Usability, Reliability,

Performance, Supportability and the Constraints (for

the “+”). There are different methodologies for elucidating

nonfunctional and the NFRs KPIs are derived from

business users’ goals, industry trends, competitive

analysis, and legacy systems constrains [2,7]. E.g.,

Availability 99.99%, Throughput 2 milli-seconds. On the

other hand, it is also equally important to identify the major

risks that may undermine those business goals. The risks

stem from the business constraints, which manifest in

various operating conditions in the business process has the

context.

B. Architecture & Design

Architecture for NFRs involves the refinement of NRFs and

the development of architecture specifications. NFR related

use-case scenarios and use-cases are the key outputs of this

phase. Architecture for NFRs covers the evaluation and

selection of a set of building blocks and design patterns that

will implement the set of non-functional requirements.

Architecting for non-functional requirements includes the

process of refining non-functional requirements and

mapping these nonfunctional requirements to specific

architecture building blocks [6,7,8]. This also involves

fixing the baseline without ambiguity and reviewing of

Architecture Building Block – ABBS that are influenced

by NFR. The next steps are to document the rationale of the

architectural decisions and trade-offs Set-Based Design -

SBD is a practice that keeps requirements and design

options flexible for as long as possible during the

development process. Instead of choosing a single point

solution, SBD methodology identifies and simultaneously

explores multiple options, eliminating weaking choices over

time. This increases the flexibility in there of the design

process by committing to technical solutions after

validating the assumptions, and hence produces better

outcomes. Applying SBD can keep options open by initially

specifying NFRs as a range, e.g., 99.98%, 99.999%. Teams

can explore the solution space and gain additional

knowledge that leads to an optimum decision.

C. Engineering (Implementation)

In terms of implementation approaches, many NFRs

prescribe additional work that needs to be done either now

or in the future to satisfy them. At times the NFR must be

implemented all at once, or at times the teams will have to

take a more incremental approach. Various parameters are

considered for the trade-offs and these impact the NFR

implementation approach. There also facilitate prioritizing

the NFRs. Five considerations that affect NFRs trade-off

decisions:

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 17

 Development expense – the cost of labour and

materials required to implement a capability

 Lead time – time needed to implement the capability

 Product cost – the manufacturing cost or deployment

and operational costs

 Value – the business-worth of the capability to the
business and customer

 Risk – the un-certainty of the solution’s technical or

business success

Implementing design patterns allows early optimizing the

code and implementing best practices to address

performance, availability, and security which are the main

QA parameters, but this could be extended to other NFRs

[6]. NFR Implementation should be planned in a way that

allows several iterations to ensure the right level of NFR.

The different alternatives that are leveraged for implement

the NFRs are:

 All at Once – Few NFRs will require immediate

implementation. For example, any regulatory

requirements require customer to respond within the

specified time constraints or risk being in violation.

 Incremental story-by-story: The teams have options.

For e.g., the need for improved performance can be

addressed over time, one story at a time, as the figure

below illustrates.

Fig 1: Implementing NFRs

D. Monitoring & Instrumentation

Monitoring tools can help perform NFR monitoring and

reporting. Measurable and reportable metrics that map to

the NFRs are key for NFR monitoring. Non-functional

requirements themselves can be performance targets for

certain key metrics. For example, Mean Time to Restore

Service (MTTRS) is a key metric for availability and

recoverability and the number and percent of times the

MTTRS is met or exceeded for e.g. email as a service

becomes a measurable and reportable nonfunctional

requirement metric for e-mail. Measurable and reportable

metrics that map to the non-functional requirements are key

for non-functional requirements monitoring. Instrumenting

the code to measure the NFR aspects, e.g., metric

collection, when it is tested and real-time monitoring and

alerting when the system is deployed in production.

Performance aspects log response time of the key

components in all layers and sub-layers. Availability

aspects of the Health control probe, are leveraged to check

the availability of the critical components/subsystems.

E. Quality Assurance

As part of the quality assurance phase, there are various

nonfunctional tests that are carried out on the solution.

These testing processes are fully integrated in the release

and deployment processes and will be fully automated.

Different tools (open source or commercial) are leveraged

during the nonfunctional testing phase: Load Testing: To

generate progressively and to trace the performance of a

system as different levels and layers:

 Stress Testing: Conducted to push the application
beyond its capabilities to observe how it reacts and

responds

 Vulnerability Testing: The scanners are used to

discover the weaknesses in a given system.

 Penetration Testing: A penetration test is an

authorized simulated cyber-attack performed to

evaluate the security of the application.

 Reliability: Ensures the redundancy mechanism works

when the system encounters heavy load or unexpected

failure

F. Sizing of NFRs

Software Non-functional Assessment Process - SNAP

framework provides the basis for sizing nonfunctional

requirements.

G. Analysis of NFRs

Architecture trade-off analysis method - ATAM

methodology from the Software Engineering Institute - SEI

is a Method to analyze NFR for Architectural Quality

Attributes. Performance, reliability are the most leveraged,

but others can be considered, e.g., security. ATAM reveals

how well an architecture satisfies quality goals, and also

enables the insight into how those quality goals interact

with each other and how they trade-off against each other.

V. NFR FRAMEWORK

The below diagram depicts the NFR framework proposed in

the paper. This is based on the various domains we have

already in the earlier sections of this paper.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 18

Fig. 2: NFR Modelling Framework

The table (see Annexure I on page no. 6) outlines the
framework that provides the deep dive details for all

lifecycle phases of NFRs from discovery to Deployment.

VI. CONCLUSION AND FUTURE WORK

Software architecture is an area of software engineering

directed at developing large, complex applications in a

manner that reduces development costs, increases quality

and facilitates evolution. A central and critical problem

software architect face is how to efficiently design and

analyse IT architecture to meet NFRs. The paper proposed a

framework-centric approach and an NFR Framework to

address this problem, where NFRs are defined as reusable

aspects to design and analysis. The software architecture is
then able to be refined iteratively with analysis results until

it is fit for the purpose to be accepted by the customer, thus

reducing the development cost and time while enhancing

the final system’s completeness and consistency.

Acceptance of software depends on the end user

satisfaction, which largely depends on maximizing NFR

elicitation and incorporation in the business applications. In

this paper has proposed NFRs method and framework to

address the entire lifecycle from discovery to deployment.

We have also illustrated in the framework to model the

NFRs that facilitates the analysis and sizing of NFRs. There
are a number of interesting directions for the future work of

NFR frameworks. One direction is to investigate the

modelling and analysis of additional aspects of the NFRs

that are not covered in this paper, e.g., Extensibility,

usability, recovery, auditability. The NFR Framework can

be leveraged to systematically analyse the synergistic and

conflicting relationships among different NFRs.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Rajesh Radhakrishnan, “Non-Functional Requirements (NFR)
Framework”, Open Group, 2009

[2] Md. Mijanur Rahman, Shamim Ripon, “Elicitation and
Modeling Non-Functional Requirements – A POS Case
Study”, International Journal of Future Computer and
Communication, Vol.2, Issue.5, 2013

[3] Mehrdad Saadatmand, Antonio Cicchetti, Mikael
Sj¨odin,“UML-Based Modeling of Non-Functional

Requirements in Telecommunication Systems”, The Sixth
International Conference on Software Engineering Advances,
2011

[4] Michael Dinkel, Uwe Baumgarten, “Modeling
Nonfunctional Requirements: A Basis for dynamic Systems
Management”, ACM SIGSOFT Software Engineering
Notes. Vol.30. pp.1-8, 2005.

[5] Christopher J. Pavlovski, Joe Zou, “Non-Functional
Requirements in Business Process Modeling” , Fifth Asia-
Pacific Conference on Conceptual Modelling, 2008

[6] Lirong Dai, Kendra Cooper, “Modeling and Analysis of

Non-functional Requirements as Aspects in a UML Based
Architecture Design”, International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2005

[7] Ethan K. Jackson, Dirk Seifert and Markus Dahlweid,
Thomas Santen, Nikolaj Bjrner, Wolfram Schulte,
“Specifying and Composing Non-Functional Requirements
in Model-based Development”, International Conference,

Software Composition, 2009
[8] Pavan Kumar Nanduru, “Non-Functional Requirement

Modeling in the Early-Phase Software Product Life Cycle”,
Thesis for: Master's Degree in Software Engineering, 2017

[9] Pere Botella, Xavier Burgués, Xavier Franch, Mario Huerta,
Guadalupe Salazar, “Modeling Non-Functional
Requirements”, 2001

[10] Christopher J. Pavlovski, Joe Zou, “Modeling Architectural
Non Functional Requirements: From Use Case to Control

Case”, IEEE International Conference on e-Business
Engineering (ICEBE'06), 2006

ABOUT THE AUTHOR

 Sameer S. Paradkar is an enterprise
architect with more than 20 years of
extensive experience which spans System
Integration, Product Development, and
advisory Organizations. Sameer works as
an SME on architecture modernization and

transformation initiatives. He has worked
on multiple digital transformations,
engagements and large complex deals in
North America, Europe, Middle East, and
ANZ regions that presented a phased
roadmap to the transformation maximizing
business value while minimizing costs and
risks. Sameer is certified and competent in

different methodologies and frameworks
including: TOGAF, NGOSS (e-TOM &
SID), ITIL, COBIT, Agile, Scrum,
DevOps, Scaled Agile Framework – SAFe
and Business Capability Modeling. Sameer
is part of the Architecture Group in AtoS.
Prior to AtoS, he has worked in top tier SI
and consulting organizations.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 19

 ANNEXURE I

 Table 1: NFR Modelling Framework

NFRs Availability Scalability Performance Reliability Maintainability Interoperability
Security

1 Category RunTime RunTime RunTime RunTime Design Time Design Time
RunTime & Design Time

2 KPI

Availability, Planned Uptime, Planned Downtime,

RTP - Recovery Time Objective, RPO - Recovery

Point Objective

Concurrent Users, Growth Projections, Cost Per

Transaction, Resource Projections

Throughput, Response Time, Storage

capacity

MTBF : Mean time failures

MTTR : Mean time to resume

operation

MTTF: Mean time to Failure

Fan-In, Fan-Out, Coupling & Cohesion metrics, Number

of antipatterns, Cyclomatic complexity, and mean time to

fix a defect, mean time to add new functionality

Compatibility with different OS, Platforms and

Applications

Resistance to known attacks, time/effort/resources needed to

find a key, probability/ time/ resources to detect an attack,

Percentage of useful services still available during an attack,

Percentage of successful attacks

3 KPI-Metrics

Availability: 99.99%

Planned Downtime: 30 minutes

RPO: 2 Hours

RTO: 20 hours

Concurrent Users: 10000

Growth Projections: 10,0000 (5 years)

Transactions per second: 1000

Response Time: 2 ms

MTBF: 11 hours

MTTR: 2 hours

MTTF: 22 hours

Fan-In: 4

Fan-Out: 2

Cyclomatic Complexity: 10

Lines of Code - LOC: 10,000

Findability, Accessibility,

Reusability, Discoverability, Openness, Transparency

Level of preparedness, Intrusion attempts, Mean Time to

Detect (MTTD), Mean Time to Contain (MTTC), Mean Time

to Resolve (MTTR), Days to patch, Number of cybersecurity

incidents, Security ratings, Virus infection monitoring,

Phishing attack success

4 Modelling
FURPS+, SAFe, TOGAF NFR Framework FURPS+, SAFe, TOGAF NFR Framework FURPS+, SAFe, TOGAF NFR Framework FURPS+, SAFe, TOGAF NFR

Framework

FURPS+, SAFe, TOGAF NFR Framework FURPS+, SAFe, TOGAF NFR Framework FURPS+, SAFe, TOGAF NFR Framework

5 Strategy/Solutioning

Clustering, Load Balancing, Fail Solutions,

Geographic Redundancy, Stateless Model, Data

Backups, Recovery and Replication, HA

Configuration for Database Tier, Caching

Horizontal vs. Vertical Scaling, Database Read

Replicas, Database Caching, Database Partitioning

& Sharding, Distributed Architecture, Connection

Pooling, Caching, Loosely Coupled Systems,

Stateless Model, Lightweight Components, Avoid

Chatty API

Caching, Distributed Architecture,

Lightweight Components, AJAX APIs,

Loose Coupling, Resource Pooling, Load

Balancing, Lower Traffic on Wire, Coarse

Grained Interfaces

Error & Exception Handling,

Instrumentation, Store & Forward

Mechanism, Queuing, Redundancy

at all levels, Data Integrity – Full-

Commit or Full Roll-back

Logical separation between components, leveraging

Patterns, Object orientation, Program to interface not

implementation, Design Pluggable Architecture, Leverage

in-built platform and container APIs, Architect High

Cohesion and Low Coupling

Leverage Canonical Model, Leverage Open Standards,

Publish Semantics, Architect Leverage High Cohesion

and Low Coupling, Program to Interfaces not

Implementation, Exposing Well Defined Interfaces

Security Controls, Monitoring & Instrumentation, Encryption,

Secure Transport Channel, DMZ, LDAP/AD, Auditing,

Security Policies

6 Patterns

Queue Based Load Levelling, Throttling, Health End

Point Monitoring, Failure Detection, Fast Recovery,

Alternate Routes

Stateless Components, Loose Coupling, Lazy

Loading, Caching, Parallelism, Partitioning,

Routing

Cash-Aside, Choreography, CQRS, Event

Sourcing, Fast Path, First Things First,

Materialized View, Priority Queue,

Sharding, Throttling, Alternate Route

Bulkhead, Circuit Breaker,

Compensating Transaction, Leader

Election, Scheduler Agent

Supervisor

Ambassador, Anti-Corruption Layer, Backends for

Frontends, CQRS, Gateway Routing, Leader Election,

Sidecar, Strangler

Cross Platform Access, Cross Application Domain

Access, Platform Independence, Platform-Scale

Independence, Higher-level Service Facades

Federated Identity, Gatekeeper, Valet Key, Authentication,

Authorization, Encryption, Data Confidentiality, SSO

Delegator, Audit Interceptor, IAM, SIEM

7 Sizing
Software Non-functional Assessment Process - SNAP Software Non-functional Assessment Process –

SNAP

Software Non-functional Assessment

Process – SNAP

Software Non-functional

Assessment Process - SNAP

Software Non-functional Assessment Process - SNAP Software Non-functional Assessment Process – SNAP Software Non-functional Assessment Process - SNAP

8
Monitoring &

Instrumentation

Application Performance Monitoring Tools Application Performance Monitoring Tools, Load

& Volume Testing

Application Performance Monitoring

Tools, Load and Stress Testing

Static Code Analysers, Reliability

Testing

Static Code Analysers Static Code Analysers Security Code Analysers, Vulnerability and Penetration testing

9 Anti-Patterns

Lack of Logging. Lack of Monitoring, Single Point of

Failure, No Data Replication, Data Integrity, Lack of

Redundancy

Rethrowing Exceptions, Logging to the Failed

Resource, SQL Injection, Assumed Database

Reliability, Configuration

Busy Database, Busy Front End, Chatty

I/O, Extraneous Fetching, Improper

Instantiation, Monolithic Persistence, No

Caching, Synchronous I/O

Excess Flow of Notifications,

Leveraging Advance Configuration

Management Tools, Excess of

systems frameworks & practices,

Dependency Complexity

impending interoperability or

availability

Premature Optimization, Bike shedding, Analysis

Paralysis, God Class, Fear of Adding Classes, Inner-

platform Effect, Magic Numbers and Strings,

Management by Numbers, Useless (Poltergeist) Classes

Stovepipes, Interface Migration, Islands of

Implementation, Migration from Legacy Systems,

Vendor Lock-In, Wolf Ticket, Reinvent the Wheel,

Swiss Army Knife, Jumble, Autogenerated Interfaces

Injection, Broken Authentication, Sensitive Data Exposure,

Broken Access Control, Security Misconfiguration, Cross Site

Scripting, Insecure Deserialization, Leveraging Components

with Vulnerabilities, Insufficient Logging & Monitoring

10 Pitfalls

Infrastructure failure, Infrastructure overload,

Malicious activity, Data inconsistency, Many-to-one

failover

Record locking, Thread synchronization, Database

sequences, Opening connections, Swapping, I/O

synchronization, Process spawning, Network

contention, ORM, Synchronous Processes, Single

Database

Database Connections, Network Latency

and Connectivity Issues, Application

Server Bottlenecks, Thread Deadlocks and

Gridlocks, Improper Data Caching,

Exceptions and Logs One Too Many,

Infrastructure, Throttling

Cascading Failures, Failure at

Scale, Redundancy of Code Base,

Chaos Engineering, Traffic

Routing Policies, Coupling, Failure

Detection & Recovery

Excessive logging, Close Database Connections,

underestimating Production load, Loading large result

sets, Hard coding Configuration Parameters, Platform

specific Code, Multiple versions JAR files

Platform & OS Integration, Data Integration, Cloud

APIs & Interfaces, Standards, Portability

SQL Injection, Cross Site Scripting, Denial of Service, Man-in-

the-Middle

11 Trade-off Analysis

Scenario-based Architecture Analysis Method -

SAAM, Architecture Tradeoff Analysis Method -

ATAM, Cost Benefit Analysis Method - CBAM,

Scenario-Based Architecture Reengineering - SBAR,

Performance Assessment of Software Architectures -

PASA.

Scenario-based Architecture Analysis Method -

SAAM, Architecture Tradeoff Analysis Method -

ATAM, Cost Benefit Analysis Method - CBAM,

Scenario-Based Architecture Reengineering -

SBAR, Performance Assessment of Software

Architectures - PASA.

Scenario-based Architecture Analysis

Method - SAAM, Architecture Tradeoff

Analysis Method - ATAM, Cost Benefit

Analysis Method - CBAM, Scenario-Based

Architecture Reengineering - SBAR,

Performance Assessment of Software

Architectures - PASA.

Scenario-based Architecture

Analysis Method - SAAM,

Architecture Tradeoff Analysis

Method - ATAM, Cost Benefit

Analysis Method - CBAM,

Scenario-Based Architecture

Reengineering - SBAR,

Performance Assessment of

Software Architectures - PASA.

Scenario-based Architecture Analysis Method - SAAM,

Architecture Tradeoff Analysis Method - ATAM, Cost

Benefit Analysis Method - CBAM, Scenario-Based

Architecture Reengineering - SBAR, Performance

Assessment of Software Architectures - PASA.

Scenario-based Architecture Analysis Method - SAAM,

Architecture Tradeoff Analysis Method - ATAM, Cost

Benefit Analysis Method - CBAM, Scenario-Based

Architecture Reengineering - SBAR, Performance

Assessment of Software Architectures - PASA.

Scenario-based Architecture Analysis Method - SAAM,

Architecture Tradeoff Analysis Method - ATAM, Cost Benefit

Analysis Method - CBAM, Scenario-Based Architecture

Reengineering - SBAR, Performance Assessment of Software

Architectures - PASA.

