

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

 ISSN: 2347-5552, Volume-9, Issue-2, March 2021

 https://doi.org/10.21276/ijircst.2021.9.2.3

Article ID IRP1127, Pages 14-21

 www.ijircst.org

Innovative Research Publication 14

Fuzzy Logic Support for Requirements Engineering

Ahmet Egesoy
1
, and Aylin Güzel

2

1
Assistant Professor, Department of Computer Engineering, Ege University, İzmir, Turkey

2
PhD Student, Department of Computer Engineering, Ege University, İzmir, Turkey

 Correspondence should be addressed to Ahmet Egesoy; ahmet.egesoy@ege.edu.tr

Copyright © 2021 Made Ahmet Egesoy et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- As software projects are getting more and

more complicated, the greatest risks in software engineering

are most probably emanating from the limitations of an

inexperienced developer in imagining the boundaries of an

abstract artefact that does not even exist yet. Requirement

engineering is extremely important in a software

development project, yet inherently difficult. Requirements

can be redundant, optional, overlapping and even

contradictory. They come from different sources and often

are represented in an informal way. Requirements also are

followed throughout the development process and can be

partially met in different degrees in various stages of the

process. In this work we advocate a fuzzy logical model for

following the requirements and their fulfillment. We also

present the logical design of a requirements knowledge base

manager that we are building in order to facilitate

requirement-aware rapid development tools.

KEYWORDS- Artificial Intelligence, Fuzzy Logic,

Requirement Engineering, Software Engineering.

I. INTRODUCTION

Requirement engineering is probably the most important

task in a software development project. Requirements come

from multiple stakeholders that have distinct interests,

intensions and world views. This makes requirement

specification a difficult task not only because it demands

effective communication skills but also because

requirements can be interrelated in unexpected ways.

In the basic software development tradition which was

later known as the waterfall process model, requirement

engineering naturally is arranged to be the first phase of the

development process. Later development methods that

adopt various forms of repetitive improvement, assume that

requirements engineering continues through a system's

lifetime. As the system evolves towards completion

requirements are gradually met. Some of them may remain

in a semi-finished condition for a long time.

Structured methods that deal with functional

requirements often arrange them in a hierarchy. In this

approach it is also possible to differentiate optional

requirements from mandatory requirements and form a

meta-model of acceptable system configurations. The

requirements of the system are either fulfilled or not.

However, requirements can often be difficult to be captured

by a rigid structure. Instead they can often be redundant,

incomplete, fuzzy, overlapping and even contradictory.

In the second section, the existing literature of the

software engineering related usage of fuzzy logic is

summarized. The third section contains some theoretical

remarks about fuzzy logic and where and why we need it.

The forth section gives an outline of our Requirements

Knowledge Base Manager project, without going into

technical details unless it is for highlighting some

interesting points regarding our original approach to fuzzy

logic. The fifth section contains conclusions.

II. LITERATURE OF FUZZINESS IN

REQUIREMENTS ENGINEERING

The current software development literature clearly

indicates the crucial role of requirements engineering in the

software development life cycle. There are cases where a

fuzzy logic approach has been employed in order to

prioritize requirements. Software defects can also be

detected with fuzzy logic. Fuzzy logic is also found to be

used for the estimation of cost, risk, reliability or total

development effort that will be necessary. Fuzzy logic was

also used for developing an intelligent recommendation

system that can hunt the requirements in the informal

definitions of large-scale software projects.

The foremost motivation in requirement specification is

to prevent any of the indispensable requirements to be

omitted. Chakraborty et al. [1] in their study emphasized

that requirements engineering was the most important stage

in the software development life cycle. They also stated

that, this stage was used to transform the missing needs and

requests of potential software users into complete, precise

and formal features.

Burgin et al. [2] in their study, tried to show how

uncertainty arises in software engineering and how this

uncertainty can be reflected in measuring software qualities.

They also emphasized that software measurement plays a

critical role in all stages of the software life cycle.

Lima et al. [3] investigated, one of the most important

issues related to the efficiency of software development

which is prioritizing of the fulfilment of requirements. In

this work requirement prioritization was found to have

ambiguous aspects, so that fuzzy logic concepts have been

advocated to represent and solve the problem much more

accurately.

Yadav et al. [4] proposed a model that predicted the

number of design defects before the test phase. In this work,

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 15

software metrics are taken into account to develop models

for early software error prediction. Software size metric and

requirement analysis results are used to predict the number

of possible defects during testing using fuzzy logic rules. In

this study, 20 real software project data sets are used to

show the validity and usability of the proposed approach.

In the work of Huang et al. [5] a new neuro-fuzzy cost

model has been proposed for software cost estimation. The

model carries some characteristics of the neuro-fuzzy

approach, such as learning ability and good interpretability.

Nisar et al. [6] focused on effort estimation that aims at

estimating the number of work hours and workers that are

needed to develop a project. The purpose of their research

has been to analyze the use of fuzzy logic in existing cost

estimation models and to examine, in-depth software and

project estimation techniques available in the industry, with

an assessment of their strengths and weaknesses.

A fuzzy model by Aljahdali et al. [7] was developed to

estimate the reliability of software projects. The Takagi-

Sugeno technique was used in their own fuzzy models. In

this study fuzzy models were tested in three kinds of

applications which are real-time control systems, military

applications and operating systems.

A new recommendation system based on Apriori

algorithm was proposed by Alzu’bi et al. [8] for

recommending user requirements. In this study, a data set

containing 4000 records was used. User-created rules are

activated for analyzing informal text data in order to

suggest requirements to users.

Bubenko et al. [9] in their work, summarized the

expanded requirements and information modeling

paradigm based on their interrelated meta-model. In this

study, requirements engineering was defined as: the

systematic process of developing requirements to analyze

the problem, document the resulting observations and check

their accuracy. This ambitious work focused on the reuse

process and emphasized the necessity of having a reuse

engineer responsible for design in the development process.

Yegorov et al. [10] studied the use of T-norm functions

which define fuzzy intersection of sets and conjunction in

fuzzy logic. They also tried to demonstrate how these

functions can be used in requirement specification. They

emphasized the verification of requirements during the

acceptance tests of information systems. They explained

that the purpose of verification was to determine the quality

of the software product by checking the software's

compliance with functional and non-functional

requirements.

Ramzan et al. [11] highlights some serious shortcomings

of current requirement prioritization techniques. In this

study, an intelligent fuzzy logic-based technique is

proposed for requirement prioritization. The technique uses

fuzzy logic to prioritize requirements based on their

perceived value. It is recommended that the system creates

two separate requirement documents in order of priority.

The first document containing requirements that were given

higher priority than a certain threshold while the second list

being the requirements that have a lower priority than the

specified threshold. Their approach was basic and they

emphasized that any requirement prioritization technique

would gain a much wider acceptance if it was easy to use

and understand.

The work by Ebraert et al. [12] has tried to bridge the

design and implementation phases by using change-based

FODA diagrams for product line engineering. Software

product line engineering is a software engineering paradigm

that encourages reuse throughout software development.

The role of the FODA diagram is to briefly describe which

feature combinations are allowed in the system. FODA

diagrams are considered as a mechanism to fill the gap

between requirements and design. In this approach FODA

diagram has been shown to be useful not only for bridging

requirements and design, but also bridging design and

implementation. In their study, they proposed a method that

can be used to automatically create a FODA diagram from

changes in the source code. Benavides et al. [13] also

worked on product line engineering. They emphasized that

software product line engineering had proven to be an

effective method for software production. They advocated

feature modeling is to identify similarities and differences

between all products of a software product line. Feature

models are used to model the software product line in terms

of features and relationships between them.

Goncalves et al. [14] focused on the semantic side of

fuzziness. According to their work the adjective "easy" is an

indefinite, thus a fuzzy term, since convenience depends on

user preferences. An easy course can be defined as a course

where all students get high marks. Height (high grade) is an

uncertain term, which also makes it fuzzy. The authors

emphasized that their goal was to provide automated

software engineering tools to develop applications with

fuzzy requirements. In their study, a method is proposed to

develop applications that support fuzzy requirements.

After emphasizing the importance of requirement

analysis Liu [15] describes a way for analyzing functional

requirements in terms of inputs, outputs and their

relationships. They complained that in many software

development projects, requirements were sometimes not

specified in detail and this made software verification and

maintenance very difficult. The main difficulty was that

many product requirements were inherently fuzzy.

Customers often defined requirements in fuzzy terms such

as “good”, “high”, “low” or “very important”.

Hsieh et al. [16] claimed that software development is

inherently cursed with complexity, uncertainty and risk.

Risk analysis is the most critical activity in a software

project, but risk assessment is often under-done. Managers

need more effective tools to reduce the high failure rate of

software projects. Fuzzy logic is well suited for analysis in

this case. Risk assessment steps are:

• Information is collected.

• Risks are defined.

• Membership functions are defined. (For fuzzy logic)

• Risks are rated. (extreme high, very high, high, quite

high, medium, quite low, low)

• Weights are evaluated. (Fuzzy logic)

• Risk assessment is completed.

This fuzzy logic based risk assessment technique claimed

better accuracy, reducing calculation time and less errors.

III. WHERE TO ALLPY FUZZY LOGIC

A. Fuzzy Logic Systems

Fuzzy logic is a general computation system which is

inspired by human thinking. This system is based on the

relations between linguistic variables and logical

expressions. Fuzzy logic is considered to be an artificial

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 16

intelligence subfield. Fuzzy logic is based on the fuzzy set

theory. Fuzzy sets are sets with vague boundaries. The

membership test to a fuzzy set can return any value between

true and false.

While in classical logic we can denote an event with 0 or

1, in fuzzy logic we can denote infinite values between 0

and 1. In fuzzy logic, a proposition has a certain degree of

truth or falsehood. A proposition can be true or false to a

certain extent such that it may be true, false, slightly true, or

slightly false.

Fuzzy logic is currently used in many areas of daily life.

It reduces waiting time by evaluating passenger traffic in

elevator inspection. It determines the best focus and

illumination when the cameras have several objects on their

visor. In washing machines, fuzzy control systems sense the

dirtiness and weight of the laundry as well as the type of the

fabric and automatically select the most suitable washing

program. Fuzzy logic senses the condition of the surface

and the environment in vacuum cleaners and adjusts the

engine power accordingly. It adjusts the heating in water

heaters according to the amount and temperature of the

water used. It detects the best working situation by

evaluating the ambient conditions in air conditioners, and

increases the cooling power when someone enters the room.

Fuzzy software adjust the screen contrast, brightness and

color on smart television sets by assessing lighting

condition.

A simple fuzzy system design is demontrated in Fig 1. In

the fuzzification stage, real numeric values are converted

into membership values to fuzzy sets. Then, through the

Fuzzy Inference Engine, IF-THEN type rules are

transformed into a fuzzy relationship defined between the

input and output space. In the defuzzification stage, the

fuzzy set is transformed back into the values of the real

world. This way a sharp membership output is provided.

The defuzzification of values are usually computed by

taking weighted averages.

Fig. 1: Design of a basic fuzzy system.

B. Why Use Fuzzy Logic

Requirements analysis is the first stage of the software

development process which is critically important. The

most dangerous risk in a software project is developing the

wrong product. Requirements management should be done

accurately and effectively.

Physical conditions, laws, competition conditions and

often the wishes of customers are effective in determining

the requirements. Unnecessary and duplicate requirements

can prevent the scope and cost of the project from being

determined. Requirements should be written as clearly as

possible in natural language sentences. Performing the

wrong requirement analysis can lead to making wrong

decisions and even bring the project to a halt. Wrong

decisions taken at the stage of requirements determination

or early stages of design are more expensive than expected

to be corrected later. In order to prevent such unwanted

situations, the requirement analysis should be done

accurately and efficiently, and the necessary decisions

should be made as early as possible and with less cost.

In order to determine the exact areas where AI should be

used in requirements engineering, one needs to imagine an

interactive development environment that is supported by a

decision support system that has access to an information

base about the project. There are certain types of

information that a developer could request from such an

information base.

In this context, we can envisage that the developer may

either be trying to determine certain aspects of the current

state of the project or she may also be trying to decide

which tasks she should prioritize for the most efficient

development process.

It should also be noted that planning of software

development is very dynamic task since rapid prototyping

applied together with small cycles with validation and

verification is a very popular method (called the

evolutionary software development process) aiming to

decrease the risks in developing large and complicated

programs. In such a flexible process model some tasks

naturally may be in a semi-finished state and modules can

also be in a semi-functioning state. These are both potential

fuzzy values, and can also lead to other fuzziness such as

relative cost or risk. Computing fuzzy truth values for

software however is not a straightforward task since

software has some peculiarities when compared with

physical artefacts.

The employment of fuzzy logic in requirement

engineering also necessitates adopting a strategy for dealing

with some inherent irregularities of software requirements

potentially from different sources. Firstly, software is an

abstract artefact that can be structured in various forms. In

an object oriented design for example there can be more

than one way a project can be divided into classes and

interfaces. Stakeholders may have completely different

ideas about the overall architecture of the project and its

components. This may create a feeling of incompatibility

between the requirements and even contradictions. There

can be containment, overlap or dependency relation

between modules rendering conventional fuzzy models

incomplete. A common mistake is to assume that

developers are simply developing the requirements one at a

time. Unfortunately coding (or designing) tasks and

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 17

requirements are totally different concepts separated with

an abstraction layer. A task may fulfill more than one

requirement whereas a requirement may well be distributed

over multiple tasks. Sometimes a requirement such as a

coding standard or naming convention may be distributed

over the whole project just as it is in some crosscutting

aspects. Tasks may also arise dynamically and may take the

form of modification instead of development from scratch.

Some requirements such as performance requirements

are very easy to be expressed as fuzzy logic statements

since they are quantifiable. The only necessary task is to

compare the numeric data with predefined fuzzy sets. Some

other requirements that are written in plain text use some

fuzzy terms that can be used when creating formal fuzzy

requirements. Fuzzy terms such as big, small, short, long,

important, very important, are used in order to express

expert knowledge in the form of fuzzy rules already. These

should only be checked for inner consistency.

As an example, we can imagine defining a requirement

such as "Authorization check is made for logging into the

system". Let us focus on how such a requirement could be

integrated into a fuzzy context. A good idea is to inject

some fuzzy terms in order to fuzzify the requirement

specification such as: "It is very important to be authorized

to log into the system." When stated this way the

requirement specification not only makes a statement about

authorization being a sub-module of logging into the

system, but it makes a meta-statement about how important

that is. In fact, it is also an indirect way of saying that in

fact the system could do without authorization check, but

(although possible) that would be a very unpleasant

alternative that receives low validity values.

IV. FUZZY KNOWLEDGE BASE FOR

REQUREMENTS MANAGEMENT

A dynamically managed set of requirements necessitates a

requirement manager that interacts with the integrated

development environment during the cycles of the evolving

project. In Fig 2. a context model for our requirement

manager has been presented. The figure is a UML diagram

with some data flow arrows added. It is evident from this

architecture that the Requirement Manager plays a very

central role in the development.

Every project is stored in the Configuration Manager

together with a set of requirements and a set of tests. As the

tests are performed some feedback data is generated so that

the fulfillment of the requirements can be monitored.

During the computations an Ontology Base is also

employed in order to provide contextual information about

the relations between the input of fuzzy operations.

Ontological knowledge, just as any reusable entity is being

kept in the Reuse Repository and regularly updated by the

Requirement Manager.

Fig. 2: Context model of requirement manager

At the center of the whole architecture the Integrated

Development Environment controls the whole process.

Code is developed and tested here interacting with the

programmer. Information about the current state of

concerns is provided continuously.

Our fuzzy logic approach is based on our original unified

fuzzy conjunction operator [17] and a fuzzified version of

Benlap’s truth values (logical constants of Benlap’s logic)

[18]. Which together form a rather complicated couple,

operational details of which is beyond the scope of this

paper.

In order to represent the requirements, we structure the

fuzzy operations around a fuzzy generalization of FODA

diagrams [19]. FODA stands for Feature Oriented Domain

Analysis, and FODA diagrams are very useful for defining

the logical variability of a system by showing the

composition of features as a hierarchy where the join points

are logical operators. The notation also employs means for

expressing mandatory and optional nodes.

A serious attempt for a semi-automated requirements

management in a real project not only creates fuzzy values

but also has to work with incomplete or inconsistent data.

The truth values in such environment has to be fuzzier than

standard fuzzy values.

Fig. 3: Benlap’s truth values [18]

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 18

Fig 3 shows the four logical constants in Benlap’s logic.

The two values on the left and right sides are True (T) and

False (F) respectively. B indicates that Both true and false

hold while N indicates that Neither of them can be claimed

to be True. So the values are True, False, Both and Neither.

In this respect “True” means that True has been satisfied

and False has not been satisfied. In the same manner

“False” means that False has been satisfied while True has

not been satisfied. Up to this point it is same as classical

logic. However, the value B claims that both True and False

are satisfied at the same time. While N claims that neither

True nor False are satisfied.

In fact, fuzzy generalization of these values can often be

easier to understand. In this case, not just the values at the

corners of the diamond but the points all over the area of the

diamond are considered as valid values of a logical variable.

The line between T and F represents the classical fuzziness.

The area below that line is where the variable is under-

constrained (has some freedom to change its value). This

representation introduces a dimension of intuitionism into

the value and the value is composed of three real numbers

for the degree of being True, False or Unknown. On the

other hand, the area above the line represents the cases

where the variable in question is over-constrained. In this

case the dimension of paraconsistency (True and False

coexisting) has been integrated with the value and third

value along with True and False represents the amount of

Contradiction. As a result, the truth value is two

dimensional; one indicating the position on the True-False

axis and the other on the Contradiction-Unknown axis.

Two dimensional fuzzy truth values allow us to have

more complicated intensions over the tree of features. It is

possible for the queries to conditionally play safe or take

risks. A conventional query that is sent to a conventional

knowledge base would have a single intension that can be

represented with a discrete True. The query has to return a

value that is True; and that is the one and only criterion for

successful operation of a discrete knowledge base. Two

dimensional fuzzy truth on the other hand can aim

precision, consistency, optimism or pessimism when it gets

necessary. For example, the unknown component of a fuzzy

variable can be grounded as True or False based on the

current degree of optimism/pessimism in the computation.

This mood parameter can be manipulated in a local rule or

can be a global environment variable that is stored within a

package.

To illustrate our case, let us think of a similar situation

about a Computer Aided Diagnosis system that employs

fuzzy logic. Such systems are used for tasks as serious as

cancer diagnosis, therefore the worst outcome that should

be avoided at any cost is a false negative, which means that

the expert system has diagnosed the patient as healthy while

he had cancer. We do not want that deadly error, so we

would like the system to lean towards the value True

(cancer positive) in the case of any doubt. (technically

called optimist because of leaning towards True, although

semantically it is a pessimistic point of view). It is also

possible to make a system for example 0.7 optimist or make

the system lean diagonally for example towards False and

Unknown at the same time. This generalization of fuzzy

logic is advantageous in simulating humanistic priorities

when computing in a real life environment.

Another addition we have made to the classical fuzzy

logic is in the implementation of fuzzy logic operators. In

fuzzy logic fuzzy t-norm and t-conorm functions are used

for computing the output of logical operators (AND and OR

respectively). These functions are said to be truth-functional

which means that they do not require any input other than

two truth values. However, as we have discussed in [16], a

realistic computation of real life fuzzy values requires

contextual knowledge about the exact semantic relation

between the two (or more) operators.

For this reason, it is our view that a plain FODA tree is

not sufficient for representing requirement fulfillment

computations even though the leaves of the tree are

supplied with fuzzy values. The tree has to be augmented

by adding associations that indicate the semantic condition

between the branches (horizontal links).

As shown in the UML diagram in Fig 4. the concerns of

the requirement manager are derived from an augmented

tree. A concern is a value that is monitored by the system

during the development process. This value is computed

from a number of other parameters by following guidelines

that are defined as augmented trees. The system has three

built in concerns: Finishedness, Functionality and Quality.

Fig 4: Concerns in Requirement Manager

Finishedness Concern shows the total effective effort that

has been spent for the project with respect to the total effort

required to finish the project. Functionality Concern

represents the degree to which the software is performing

its function. Quality Concern computes the overall quality

of the artefact by using predefined quality measures,

including code quality.

A forth type of concern is the User Defined Concern. The

user may add as many of these as she likes. Some of these

can involve parameters from the whole project; the others

can be concerns about some local parameters. The

developer can add concerns for certain specific types of

functionalities such as “user interaction” or “connectivity”.

The functionalities of specific subsystems can also be

watched. For example, the developer may want to know up

to what degree the data logging subsystem is functional.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 19

Fig. 5: FODA Syntax variation

Our syntax for representing concerns is based on FODA

diagrams. In order to make some semantic extensions

without looking too complicated however, a few

modifications are made to the syntax to make it more

extendible. As can be seen in Fig 5. logical operators are

written in little circles that connect the children of the

respective node. The roles of conjunction and disjunction

are the same but now aggregation and other operators can

be easily added.

The biggest difference of our fuzzy logic computation

from the classical fuzzy logic approaches is the employment

of non-truth-functional operators the details of which can be

found in [16]. To summarize the idea behind this approach

we can say that the correlation between the two statements

are taken into consideration when computing any logical

operator that joins these two statements. So in this approach

the operands are not mere numbers, but the information

about the statements themselves has to be preserved. This is

mainly why an Ontology Base is required for correctly

computing the concerns.

Fig. 6: Directions of interaction of statements

Fig 6. depicts the possible variation of the correlation

between any given two concepts. The concepts can be

collaborating in the sense that a high value in one concept

can be a sign of a high value in the other (correlation=1).

They can be inconsistent so that a high value in the first

concept prevents a high value in the other (correlation=-1).

They can also be independent from each other

(correlation=0). As indicated in our former work [16],

semantically Gödel T-norm is the suitable function for

computing conjunction in the case of collaboration between

the operands (this is also the most commonly used t-norm :

the min function). In the case of independent operands

product t-norm is the correct choice. If the operands are

contradictory Lukasievicz t-norm should be preferred.

For the cases in between these formulas should be

combined (at least the two on the sides should be

individually combined with the product t-norm). We used

the parametric general t-norm family called Frank t-norms

for a smooth combination and also modified the formula

just a little bit for allowing our correlation value (between -

1 and 1) as a suitable parameter into the Frank t-norm

formula. This makes a smooth value change between

discrete correlation values possible. All t-norms also have

corresponding t-conorms that can be computed directly

from the t-norm formula. A corresponding material

implication function can also be computed.

Fig. 7: Conceptual conjunction

In Fig 7. a piece of augmented tree that indicates a fuzzy

conjunction can be seen. The conjunction defines a feature

called “High Quality User Interface” by combining

“Elaborated Control” with “Easy to Use Control”. A line

between the operands indicates the correlation between

these two features and the value -0.8 means that the two are

almost contradictory (value is close to -1). In this case the

requirement manager will use a formula that is very close to

the Lukasievicz t-norm, with just a little touch of product t-

norm.

Such design trade-offs are a natural sources of negative

correlation but in fact they are the areas where the essence

of good design comes from. When two forces counteract

and create tension, creativity appears, not only in nature but

also in human.

Another source of negative correlation is of course the

multiplicity of the source of requirements. Basically there

can be too many stakeholders in a project with conflicting

interests. For example, in a hypothetical school information

system, the students, instructors, managers, the department,

the faculty, and the student affairs bureau all want to be

able to monitor and manipulate everything, and conflicts

may arise. One requirement originating from the student

affairs bureau may ask for more security in accessing the

data, while the instructors may demand more speed and

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 20

freedom when doing so. Without these problems we would

not need designers and engineers.

Fig. 8: Aggregation with overlap

A positive correlation can also interfere with the correct

computation of concerns. In Fig 8. there is another piece of

augmented tree that shows the definition of a concern called

Structured Code. Instead of a conjunction or a disjunction,

this feature has been defined by using the aggregation

operator. Aggregation is used whenever there are multiple

cooperating individuals that are performing different parts

of the same task. A good example is the way pixels of a

picture contribute to the overall color of the picture. The

usual way of implementing aggregation is by an average

(usually a weighted average) operator. When the operators

of aggregation semantically overlap, their weight should be

decreased accordingly.

In the example Structured Code was defined as a

combination of Modular Code, Indentation and Comments.

Between Modular Code and Indentation there has been a

positive correlation indicated. This is because as the code is

being modularized chunks of copy-pasted code are replaced

by function calls, blocks get smaller and indentation

problem is also partially solved. In this example Modular

Code and Indentation will be assumed to be overlapping by

0.6 and their weights will be computed accordingly. There

has been no correlation specified for Comments so zero

correlation is assumed.

There can be cases when two requirements specified by

two different stakeholders overlap completely

(correlation=1). One requirement may be containing the

other completely and in that case the smaller one has to be

discarded. If the ontology does not inform about the

containment relation the two values can be averaged

separately and then enter the greater aggregation as one

unit. If one requirement is just a redefinition of the same

phenomenon, the concern should be corrected by deleting

one of them.

An aggregation operator can be modified in other ways

as may be seen in Fig 9.

Fig. 9: Compatibility as an aggregation of features

Fig 9. represents a data compatibility requirement for a

word processor. The new word processor that is being

developed has to be compatible with various existing freely

available word processors. The concern tree computes the

overall degree of compatibility of the new product in terms

of its degrees of compatibility with each of the existing

word processors. These are all fuzzy values since the sets of

supported files may intersect at various degrees.

None of the features on the tree are really indispensable

but we cannot claim a disjunctive combination either.

Disjunction indicates that even one is enough, although in

this case the situation is rather like “more the better”.

However, the designer may still feel that one or two of these

contributors are a little more important. This can be

reflected on the tree by adding the labels “i.” (important)

and “v.i.” (very important) on the links of the operands. In

this case the requirement manager will still calculate the

aggregation value but will make the necessary fuzzy

touches to the weights of the corresponding operands just as

much as the fuzzy terms “important” and “very important”

inspire.

V. CONCLUSION

Requirement engineering is an extremely important part of

software engineering and in large projects, automated

support is a necessity. It is also a dynamic process that

involves scalable behavior based on scalable judgments.

The developers also have to deal with interrelated,

redundant, incomplete or contradictory information.

As a remedy, in this work the logical design of a new

fuzzy logic based requirement manager facility has been

introduced by mentioning its most striking solutions. These

are an original two dimensional fuzzy value representation

and our new semantic-aware, non-truth-functional method

of performing fuzzy operations. These were combined on

an extended version of FODA diagrams that can express

some more semantic features.

As a future work we are hoping to complete the

implementation of our tool and observe some intelligent

behavior from it.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 21

REFERENCES

[1] A. Chakraborty, M. Baowaly and A. Arefin, “The Role of

Requirement Engineering in Software Development Life

Cycle”, Journal of Emerging Trends in Computing and

Information Sciences, 3(5), 2012.

[2] M. Burgin and J. Debnath, “Fuzzyness and Imprecision in

Software Engineering”, 2006 World Automation Congress,

24-26 July 2006.

[3] D. Lima, F. Freitas and G. Campos, “A Fuzzy Approach to

Requirements Prioritization”, Springer, 2011.

[4] D. Yadav, S. Chaturvedi and R. Mısra, “Early Software

Defects Prediction Using Fuzzy Logic”, International Journal

of Performability Engineering 8(4), 2012, pp. 399-408.

[5] X. Huang, L. Capretz ve J. Ren, “A Neuro-Fuzzy Model for

Software Cost Estimation”, Proceedings of the Third

International Conference On Quality Software, IEEE, 2003.

[6] M. Nisar, Y. Wang and M. Elahi, “Software Development

Effort Estimation Using Fuzzy Logic - A Survey”, Fifth

International Conference on Fuzzy Systems and Knowledge

Discovery, IEEE, 2008, pp. 421-427.

[7] S. Aljahdali, A. Sheta, “Predicting the Reliability of Software

Systems Using Fuzzy Logic”, 2011 Eighth International

Conference on Information Technology: New Generations,

2011.

[8] S. Alzu’bi, B. Hawashin and M. ElBes, “A Novel

Recommender System based on Apriori Algorithm for

Requirements Engineering”, 2018 Fifth International

Conference on Social Networks Analysis, Management and

Security (SNAMS), 2018, pp. 323-327.

[9] J. Bubenko, C. Rolland and P. Loucopoulos, “Facilitating

Fuzzy to Formal Requirements Modelling”, IEEE, 1994.

[10] Y. S. Yegorov, V. R. Milov, A. S. Kvasov, “Formalization of

Software Requirements for Information Systems Using Fuzzy

Logic”, International Conference Information Technologies

in Business and Industry 2018, IOP Publishing, 2018, pp. 1-5.

[11] M. Ramzan, M. ArfanJaffar M. AmjadIqbal, “Value Based

Fuzzy Requirement Prioritization and its Evaluation

Framework”, 2009 Fourth International Conference on

Innovative Computing, Information and Control, 2009, pp.

1464-1468.

[12] P. Ebraert, D. Soetens and D. Janssens, “Change-based

FODA Diagrams Bridging the Gap Between Feature-oriented

Design and Implementation”, Conference: Proceedings of the

2011 ACM Symposium on Applied Computing (SAC),

TaiChung, Taiwan, March 21 - 24, 2011.

[13] M. Goncalves, R.Rodriguez, L.Tineo, “Formal Method to

Implement Fuzzy Requirements”, Dyna (Medellin,

Colombia), 173(II), 2012, pp.15-24.

[14] X. Liu, “Fuzzy Requirements”, IEEE Potentials, Institute of

Electrical and Electronics Engineers (IEEE), Apr, 1998.

[15] M. Hsieh, Y. Hsu and C. Lin, “Risk Assessment in New

Software Development Projects at The Frontend: A Fuzzy

Logic Approach”, Journal of Ambient Intelligence and

Humanized Computing, 9(2), Springer, Apr, 2018.

[16] A. Egesoy, “Choosing Fuzzy Operators for Real-Life

Engineering Applications”, Turkish Journal of Fuzzy

Systems, 8(2), 2017, pp. 73-89.

[17] N. D. Belnap, “A Useful Four-valued Logic”, In: G. Epstein

and J. M. Dunn (eds.), Modern Uses of Multiple-Valued

Logic, Reidel, Dordrecht, 1977, pp. 7–37.

[18] P. Pohjalainen, “Feature Oriented Domain Analysis

Expressions”, Computer Science, 2008.

ABOUT THE AUTHORS

 Ahmet Egesoy (PhD in Computer

Engineering) is an instructor and

Assistant Professor in Computer

Engineering Department of Ege

University Izmir, Turkey.

Research interests include object-

oriented programming, design

patterns, model-driven software

development, artificial intelligence,

programming languages,

programming paradigms, philosophy

of the language, semiotics and

knowledge representation.

 Aylin Güzel (M.Sc. in Computer

Engineering) is a Ph.D. student in

Computer Engineering Department of

Ege University, Izmir, Turkey.

Research interests include software

engineering, object oriented

programming, fuzzy logic and design

patterns.

