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 
Abstract— An adjacent graph is a connected bipartite 
{0,1}-semigraph which contains exactly one part in which any 
two vertices have exactly one common neighbour. Mulder [1] 
observed that; (0, λ) -semigraphs are regular. Furthermore a 
lower bound for the degree of (0,n)-semi graphs with diameter 
at least four was derived by Mulder [1]. In this paper, we find 
all -graphs and (0,1)-graphs. Furthermore, we determined 
some basic properties of adjacent graphs, where, λ≥1. 
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I. INTRODUCTION 

  Let us first recall some definitions and results. For more 
details, (see [1]). To facilitate the general definition of a 
graph, we first introduce the concept of the unordered 
product of a set V with itself.  

Recall that the ordered product or cartesian product of a 
set V with itself, denoted by V×V, is defined to be the set of 
all ordered pairs (s; t), where s 2 V and t 2 V. Here (s; t) and 
(t; s) are considered to be distinct entities except when s = t. 
In a similar vein, the symbol {s,t} will denote an unordered 
pairs.  A graph G=(V,E) consists of a finite nonempty set V 
of v vertices together with a prescribed set E of e unordered 
pairs of distinct vertices of V. Each pair u={x,y} of vertices 
in E is a edge of G and u is said to joins x and y. We write u 
= xy and say that vertices x and y are adjacent vertices; the 
vertex x and the edge u are incident with each other, as are y 
and u. If two distinct edges u and v are incident with a 
common vertex, then they are adjacent edges. A vertex z 
which adjacents to two distinct vertices x and y is called 
common neighbour of x and y. The neighborhood of a vertex 
x is the set N(x) consists of all vertices which are adjacent 
with x. The degree of a vertex p is the number d (p) of edges 
which are incident with it.  

Let X be a subset of V. The integer n , where n + 1 = max 
{d(p) : p 2 Xg, is called the order of the set X. The minimum 
degree among the vertices of G=(V,E) is denoted by(G): If 
G=(V,E) contains a cycle, the girth of G=(V,E) denoted 
g(G) is the lenght of its shortest cycle. 

Let G=(V,E) be a connected graph , X be a subset of V, A 
be a finite subset of non-negative integers and n (x; y) be the 
total number of common neighbours of any two vertices x; y 
of X.. The set X is called A-semiset if n (x; y) 2. for any two 
vertices x; y of X. If X is a A-semiset, but not B-semiset for 
any subset B of X ,the set X is called A-set. G=(V,E) is a  
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A-semigraph (A-graph) if V is the A-semiset ( A-set ), 

respectively.  
Mulder[1] observed that - � �semigraphs(   2) are regular. 

Furthermore a lower bound for the degree of –semigraphs  
with diameter at least four was derived by Mulder [1]. In this 
paper, we …nd all f0g-graphs and -graphs. Furthermore we 
determined basic properties of some adjacent graphs.a 
{1}-set. 

Definition 1.1 A bigraph (or bipartite graph) G=(PᴗL,E) is a 

graph. 

II. MAIN RESULTS 

Lemma 2.1. Let ) G=(PᴗL,E) be a bigraph with parts P 
and L. If the part P is a {1}-set, the part L is {0,1}-semiset 
and ) G=(PᴗL,E) is adjacent or biadjacent. 

Proof 2.1.  Let ) G=(PᴗL,E) be a bigraph with parts P and 
L and the part P be a {1}-set.  

Assume that the part L does not {0,1}-semiset. Then the 
part L has at least two distinct vertices u and w having at 
least two distinct common neighbours x and y in the part P. 
This contradict to chosen of the part P. Thus the part L is 
{0,1}-semiset and ) G=(PᴗL,E) is adjacented or biadjacent. 

Lemma 2.2. The intersection of any number of convex 
subgraphs of a graph G=(V,E) is a convex subgraph. 

Proof 2.2. Let Xi be subset of V and X be the intersection 
of any number of convex graphs Gi = (Xi; Ei) on Xi for any 
nonnegative integer i. 

We need only show that, if p and q are vertices of X and 
the vertices p and q have common neighbour r, N(r)↔  Xi 
for each i. But, any convex graph containing X contains the 
vertices p and q, and so by de…nition the neighborhood 
N(r). Therefore, N(r) is in all convexs graphs of which X is 

�the intersection, and so N(r)  X. 

Proposition 2.1 Let X be any set of vertices of a graph G. 
A convex subgraph which contains X, but does not properly 
contain any convex subgraph which contains X is called the 
closure of X denoted by [X]. 

It is not obvious from the definition that the closure of X 
is a unique, but this follows lemma below. Thus, the closure 
of X is the smallest convex graph containinig of X. It is clear 
that [ in any graph G=(V,E). Also, for any subset X of V, X 
[X], [[X]] = [X] and if X Y then [X] [Y] 

Lemma 2.3. The closure of any subset X of a graph G is 
the intersection of all convex graphs on X. 

Proof 2.3. By lemma2.1, this intersection is a convex 
subgraph of G. It is Definition 2.1 Let X be any set of 
vertices of a graph G. If for each vertex x of X x =2 [X], the 
set X is called independent. A basis of a G=(V,E) is an 
independent subset of V which generates V. 

It is not obvious from the definition that a basis of a partial 
adjacented bigraph G=(V,E) is not necessarily unique. The 
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incidence graph of Fano plane is a adjacented bigaph having 
many more diferent bases. For a given partial adjacented 
bigraph, do all bases have the same number of elements? 

The answer is no, as can be seen by considering the 
example 2.1. above. 

Example 2.1. Let P={p1; p2; p3; p4; p5; p6; p7; p8; p9}; 
L={l1; l2; l3; l4; l5; l6; l7; l8; l9}, P \ L=;, and N(l1) = {p1; 
p2; p3}; N(l2) = {p1; p4; p5}; N(l3) = {p3; p5}; N(l4) = {p6; 
p7}; N(l5) = {p7; p8}, N(l6) = {p6; p9}; N(l7) = {p8; p9}; 
N(l8) = {p2; p5; p7; p9}; N(l8) = {p3; p4; p6; p8}. Then the 
set P [ L determines a partial adjacented bigraph ) 
G=(PᴗL,E). In this graph, the set {p1; p3; p5} is a basis 
while so is the set {p6; p7; p8; p9}. 

Definition 2.2. Let G=(PᴗL,E) be a bigraph with parts P 
and L. and) G=(PᴗL,E) the part P be {1}-set |P|= v , |L| = b; 
the vertices of P will be labelled p1, p2,…, pv. Similary the 
vertices of L will be labelled ℓ1; ℓ2,… ℓb: To make our 
notation even more concise we define, wi = a(ℓi) : The total 
number vertices which are adjacent to the vertex ℓi bi = a(pi): 
The total number vertices which are adjacent to the vertex 
pi. 

Definition 2.3. If piϵℓj, rij=1,and if piɇℓj, rij=0 

Proof 2.4. If we add the 1’s in each column, column by 
column, we get If we add the 1 s in each row, row by row, 
we get bi. But obviously we are just counting the same 
number of 1’s in two diferent ways so we have the equations. 

Definition 2.4. Let G=(PỤL,E) be a bigraph with parts P 
and L. and the part P be (semiadjacent) adjacent Let piϵP, 
ℓjϵL and piϵℓj. The total number of paths which are between 
pi and lj is called the path number denoted p(pi,lj)=pij. If 
piϵlj, pij=1. Hence pij =1 if rij = 1: 

Lemma 2.5. Let G=(P ỤL,E) be a bigraph with parts P 
and L, and the part P be (semiadjacent) adjacent and  for any 
vertex pi of P and vertex lj of L, piϵ �lj, pij  bi = a(pi) and 
d(pi; lj) = 3 or d(pi; lj) = 1. 

Proof.This follows easily from  if piϵℓj, rij = 1 it follows 
from semiadjacent  part P. 

Lemma 1.6. If rij = 0 then the number adjacent vertices to 
pi and don’t have common neighbour to lj is a(pi)- pij . 

Proof : Since a(pi) is the total number of vertices which 
are adjacent with pi and by definition pij, the result is 
immediate. 

Proposition 1.7. If G = (BỤW;E) is a (weakly adjacent) 
bigraph with parts B and W, B is weakly adjacent part of G 
and pij = a(lj) for every vertex pi of B and vertex pi. of W 
such that rij = 0 then B is a part bigraph. 

Proof.. Since jWj = b 1; there is a vertex pk of W, say. We 
must show that the set B is adjacent, that is, for any distinct 
two vertices pi and pj of B, a(pi; pj)=1. Let pi; pj be two 
distinct vertices of B. If rik = rjk =1, a(pi; pj) =1. If rik = 0 
and rjk = 1 then by assumption pik = a(ℓk) so that it is easy to 
see that it is the smallest convex graph on X as any convex 
graph on X is included when we take the intersection.We say 
that X generates its closure. 

Conversely, given a convex subgraph G0, we say that X is 
a generating set for G0 if [X] = G0, so that also X generates 
G0 has a common neighbour with vertex which is adjacent 
to lk. In particular, pi and pj have common neighbour. Thus 
a(pi; pj) = 1 Finally If rik = rjk = 0, using the hypothesis once 

again, for a vertex q which is adjacent with lk a(pi; q) = 1. If 
the vertex pj is adjacent with common neighbour of vertices 
pi and q, a(pi; pj)=1 and otherwise, apply the hypothesis one 
last time to get a common neighbour of vertices pi and pj . 
Therefore a(pi; pj) = 1, that is, G is adjacent. 

Proposition 1.8. Let G = (B ỤW;E) be a(weakly adjacent) 
bigraph with v+b vertices and parts B and W, |B| = v,.|W| = b 
and B is weakly adjacent part of G. Then if B is a adjacent 
part, Ʃ vj(vj-1) = v(v-1). 

Proof.  Suppose that G is a adjacent bigraph. Then B is a 
adjacent part of G. We count the number of pairs of vertices 
of B in two di¤erent ways. First of all, there are v 2 pairs of 
vertices (counting {pi,pj} to be the same pair as {pj,pi}) or 
v(v-1) 2 . 

Proposition 1.9. Let G=(V;E) be a graph, P be a maximal 
nonadjacent vertex set of V and L={Vl ,V j N(ℓ)↔P, |N(ℓ)| 
and p P, l 2 L, p 2 l , p 2 N(l). If P is a (weakly) adjacent 
subset of V , the structure S = (PỤL,E) is a (near) linear 
space. 

Proof.  Each vertex ℓ of L is common neighbour of at 
least two distinct vertices x and y of P, since |N(ℓ)|=2. 

�Therefore v() = jlj  2. Thus NL1 holds. For two distinct 
�vertices a nad y of Þ, since a(x; y)  1 the vertices(points) x 

and y have at most one common neighbour(line). Thus NL2 
holds in S. Therefore, S = (P; L;E) is a (near) linear space. 

Corollary. If G = (Þ[L;E) is (weakly) adjacent bigraph 
with(weakly) adjacent part Þ, (Þ; L0;E) is a (near)linear 

� �space where L0 = fl 2 L j N(l)  Þ , jN(l)j  2g Let G(Þ,L;E) 
denote to the graph with parts Þ and L. The point p 2 Þ lies 
on the line l 2 L if the vertex p is adjacent to the vertex l in G. 

Proposition 1.10  Let G = (Pv [ Lb; E) be a bigraph with 
parts Þ and L, the part Þ of G be a weakly adjacent set and  
ordered pairs of vertices adjacent to a vertex pi of P. So the 
left hand side of the inequality counts the number of ordered 
6 pairs of coadjacent vertices of L. Clearly there are 
altogether |L|(|L|-1) ordered pairs of vertices of L. Thus the 
equality holds. 

Proposition 1.11. Let G be a weakly adjacent bigraph 
with parts Þ and L, the set Þ be a weakly adjacent set. 

The set L of G is adjacent part of G if X pϵP , 
a(pi)(a(pi)-1)= |L| (|L|-1) 

Proof  It is clear from proposition 1.10. 
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