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 
Abstract— Various control charts are already developed for 
the problem of detecting any shift in the mean/median of a 
sequence of observations from a specified control value taken 
from some process. Some of them for detecting small shift(s) 
from the target values are Cumulative Sum (CUSUM), 
Cumulative Score (CuScore) and recently developed 
nonparametric charts. Various authors have already worked 
on CUSUM control charts and found suitable results. Another 
chart is Cuscore chart, which is also suitable for this situation. 
Another test is nonparametricCUSUM charts based on 
nonparametric test statistic. 

One of the efficient procedure is the Cumulative Sum 
Control chart (CSCC) originally introduced by Page [1]. The 
properties of CSCC procedure are usually derived under the 
assumption that the observations are independent and 
identically distributed normal random variables, another 
control chart based on Cumulative Scores developed by 
Munford [2]. The ARL of this scheme are simpler to compute 
than those of CSCC. Recently a new control chart is developed 
based on the nonparametric chart which is preferable from 
the robustness point of view. Few of the workers on 
nonparametric CSCC are Parent [3], Reynolds [4, 5], 
Mcgilchrist and Woodyer [6], Bakir and Reynolds [7] etc. 

In this paper we want to study the performance of 
CSCC, CuScore and Nonparametric CUSUM control Chart   
in detecting the mean/median shift from the specified (target) 
values. For this purpose we computed the ARL by the 
simulation method for both in control and under control 
situations of the process. Results obtained are displayed in 
various tables using different shift parameters and under 
different distributions. Results are also shown in graph for 
easy visual comparison. 

 
Index Terms— CSCC, CuScore Chart, Nonparametric chart, 
ARL, Simulation. 

 

I. INTRODUCTION 
  Statistical Process Control (SPC) has been widely used 

to monitor various industrial processes. Most of the research 
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works in SPC focuses on charting techniques. Some control 
charts such as Shewhart charts, CUSUM charts and EWMA 
charts are useful tool in detecting the shifts in the process 
mean and/or deviation. These charts are used to monitor 
product quality and detect special events that may be 
indicators of out-of-control situations. These charts are 
based on the basic assumption that a process being 
monitored will be produce measurements that are 
independent and identically distributed over time when only 
inherent sources of variability are present in the system. 

It is well known that CUSUM procedures give 
tighter process control than the classical quality control 
schemes, such as Shewhart schemes. Another effective 
alternative to Shewhart Control chart is Exponentially 
Weighted Moving Average (EWMA) chart. The above two 
alternatives are especially effective for detecting relatively 
small shifts. The properties of these procedures have been 
widely discussed in the statistical literature; see, for 
example, Page [1], Evan and Kemp [8], Bissell [9], Roberts 
[10, 11], Lucas and Saccucci [12]. 

Shewhart type control charts only use the last 
sample to monitor the process. These charts have no 
memory: previous observations do not influence the 
probability of future out-of-control signals. Again, Shewhart 
Charts are insensitive to small shifts. They are very effective 
if the magnitude of the shift is 1.5 sigma or 2 sigma or larger. 
For smaller shifts in the process mean and/or deviation, the 
CUSUM and EWMA are good alternative to the Shewhart 
chart.  

In EWMA type control charts the process is 
monitored using a weighted mean of all previous 
observations. The weight attached to recent observation is 
high compared to the weights of older observations. The 
weight decline exponentially as the observation gets older 
and older. The parameter  determines the memory of the 
EWMA chart.  

The CUSUM chart, which was originally 
introduced by Page [1], uses an unweighted sum of all 
previous observations. This chart has a rather long memory. 

Now occasions may occur when some specific kind 
of deviation other than a change in mean is feared as a likely 
possibility. To cope with this kind of problem, Shewhart 
chart may be used as one of many virtues of the Shewhart 
chart is that it is a direct plot of actual data and so can expose 
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types of deviations from statistical ability, of a totally 
unexpected kind. However, when we can identify in advance 
a kind of departure specifically feared, then a more sensitive 
detection statistic, known as Cumulative score statistic, 
proposed by Box and Jenkins [13] in an unpublished report 
can be used. Munford [2] developed process control schemes 
using CuScore statistic. 

In this article, a comparative discussion is made to 
study the performance of three control charts, viz., the 
parametric Tabular CUSUM, a nonparametric CUSUM 
chart based on sign statistic, and a CuScore control chart. 
For this purpose we computed the ARL of the three processes 
by the simulation method for both in control and under 
control situations. Results obtained are displayed in various 
tables using different shift parameters and under different 
distributions. Results are also shown in graph for easy visual 
comparison and accordingly, discussion and conclusions are 
made.  
II.     DESCRIPTION OF THE CONTROL CHARTS 
 
In this section we would briefly discuss the various 
parametric as well as nonparametric control charts that we 
are considering in this paper for comparison purpose. 

A. CUMULATIVE SUM CONTROL CHART (CSCC) 

The Cumulative Sum (CUSUM) Control charts were, 
initially proposed by Page [1] being studied by many 
authors. 

The tabular or algorithmic CUSUM is defined as  

0 1max[0, ( ) ]i i iC x k C 
      … (2.1) 

                                                       

0 1max[0, ( ) ]i i iC k x C 
         … (2.2)                               

where the starting values are 0 0 0C C   . K is 
usually called the reference value or allowable value or 

slack value. K is often chosen between the target 0 and 

the out-of-control value of the mean 1  that we are 
interested in detecting quickly. Thus if the shift is 

expressed in standard deviation units as 1 0          

or    1 0       or  

1 0 
 

  then 
1 01

2 2K    

. 

A reasonable value for H is five times the process standard 
deviation  .Proper selection of the two parameters, viz., 
reference Value K and decision Interval H is quite 
important as it has substantial impact on the performance 

of the CUSUM. Note that i iC andC 

 accumulate 

deviation from the target value 0 that are greater than k, 
with both quantities reset to zero on becoming negative. If 

either i iC orC 

 exceed the decision interval H, the 
process is considered to be out-of-control. 
CUSUM for rational subgroups  
The tabular CUSUM can be easily extended to the case of 

averages of rational subgroups (n>1). One have to simply 

replace iX  by iX (the sample or subgroup average) in the 
above formulas (2.1) and (2.2), and replace   with  i.e. 

 

x n
 

           

0iX
i

n
Y 




 
 
Then the standardized two-sided CUSUM is  
 
 

 
   … (2.3) 
    ... (2.4) 
 
                   

With Shewhart charts, the use of averages of rational 
subgroups substantially improves control chart performance. 
However, this does not always happen with CUSUM. Only if 
there is some significant economy of scale or some other 
valid reason for taking samples of size greater than one be 
used with the CUSUM. 

B. CONTROL CHART BASED ON CUMULATIVE 
SCORES  
In the CUSUM scheme (Page[1]) for detecting increases 

in the mean from its target value, the cumulative sums of the 
differences between the sample means and some reference 

value K, ( )jX K  , are plotted against sample number. If 
the CUSUM becomes negative, the cumulation is restarted, 
but if it reaches some value H (the decesion interval), then 
corrective action is indicated. For two-sided control, it is 
necessary to test also for decrease in the mean, and this is 
done by operating a second CUSUM with reference value 
and decision interval –K and –H respectively. 

 The schemes developed by Munford [2], assign a score 
of -1, +1 or 0 to the sample means according to whether they 
are extreme negative, extreme positive or otherwise.  In the 
two- sided case corrective action is indicated when the 
modulus of the cumulative score reaches some fixed value, 
which amounts to operating a CuSum on the scores with 
zero reference value. In the one-sided case, a new decesion 
rule is developed by Munford [2]. Like the Shewhart 
scheme, both schemes have the attractive property that the 
Average Run Length (ARL) can be expressed as a simple 
function of the tail areas of the quality distribution, and the 
basic Shewhart scheme is in fact a special case. The 
advantage of these schemes is that they can be more sensitive 
to small deviations in the process mean than Shewhart 
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schemes, at the expense of some efficiency for larger 
deviations. 

 The two-sided case of CuScore chart due to Munford 
[2] may be stated as:  

           Without loss of generality, we may scale the 

variables so that 0 0   and
1

n
 

.  Let k be a positive 
constant, and define the random variables U1,U2,…       by  

1,

0, , 1, 2,...

1, ,

j

j j

j

X k

U k X k j

k X

   
       
 

    
Thus we have  Sj=Sj-1+Uj ,    j = 1,2,…   where initial 

value    S0=0,          
Here,  Sj represents the cumulative score of the first j 

samples. A positive value of Sj would indicate an excess of 
high sample means amongst the first j samples, a negative of 
Sj the reverse. 

            Page [14] has suggested that a plot of Sj against j 
be recorded, and each point then tested with a V-mask. 
Munford [2] scheme uses the same plotting positions, but the 
mask is replaced by fixed boundaries at S a   (where a   
is a positive integer); corrective action is taken as soon 

as jS a
. The Shewhart chart thus corresponds to the 

special case a =1.  
The motivation for the stopping rule with fixed 

boundaries is as follows:  
            When the process is in control ( 0)  , Sj 

represents the position of a particle undergoing a one- 
dimensional symmetric random walk between absorbing 
barriers. For a suitably chosen value of K the ARL can be 
made up as large as necessary, for any value of a. As soon as 
the process goes out of control, the associated random walk 
develops a drift, and the expected time to reach absorption is 
much less.  

To compute  ( ),ARL   first note that U1, U2,…       have the 
common distribution 

                                                 
{ 1} ,
{ 0 } 1 ,
{ 1} ,

P U q
P U p q
P U p

  
   
   

where  ( ) 1 ( )p p k       …(2.5) 
                                                              

( ) 1 ( )q q k                  …(2.6) 

     Let ( )i iE E   be the expected number of further 
samples required until corrective action is taken, given that 

the current S value is i , ,...,i a a  . By considering the 
three possibilities that may arise when the process is next 
sampled we have 

1 11 (1 ) ,i i i iE qE p q E pE               

1,..., 1i a a                   …(2.7) 
Solving the difference equation (2.7) and using the 

conditions 0a aE E    gives 
  

      
2 2

2
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,

[( ) {( ) ( ) }],
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a

a i
p

q qa a ia
p q q p p

p

p q

a i p q

i a a




 



   


…(2.8) 

The Average Run Length (ARL) has the same value as   
E0 , So after a little algebra we get  

ARL( )=   

2

2

2
( ) 1 ( )

,

{ 1},aq
p

a
p

a
p q

p q

p q 



 
    

 
                             ….(2.9) 
 

C. SIGN-CUSUM CHART FOR MONITORING THE 
PROCESS CENTER  
The parametric CUSUM chart (Page [1]) for detecting a 

shift in a normal mean is based on the cumulative sum of 
differences from target. The Nonparametric CUSUM chart 
discussed here (Amin, Reynolds, and Bakir, [15]) uses a 
cumulative sum of sign test statistic iSN . A one sided chart for 
detecting positive deviations from the in-control median 
value signals at the first t for which  

01 1
( ) min ( )

t u

i iu ti i
SN k SN k h

 
 

    
      … (2.10)                                                           

where, h>0 and k>0 are parameters of the procedure. A 
one-sided 

chart for 
detecting 
negative 

deviations signals at the first t for which  
              
                                                   … (2.11) 
 
 
The corresponding two-sided chart signals at the first t for 

which either of the one-sided charts signals. An alternate 
and equivalent way to apply the CUSUM chart involves the 
use of a graphical V-mask scheme(e.g. Van Dobben de 
Bruyn, [16]).If k and h are non-negative integers then the 
above one-sided positive procedure is equivalent to a discrete 

time Markov chain  { *, 0,1, 2, ....}tSN t  , with the 
state space a subset of{ 0,1,2,……,h}, where 0* 0SN   and 

0 1 1

max ( ) ( )
u t

i iu t i i
SN k SN k h

 
 

    
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1* min{ ,max{0, * { }}t t tSN h SN SN k            ... (2.12)                                                                                                                                                                 
Where the state h is an absorbing state, and absorption 

corresponds to a signal by the procedure. 
 The ARL of CUSUM chart using iSN  can thus be 

determined from the mean absorption times for the state h. 

Let 0 1 1( , , ..., ),hm m m m   where jm
is the mean 

absorption time, given that the chain started initially in state 
j. If the CUSUM chart starts with 0* 0SN  , then the ARL is 

just 0m . If Q is the hxh matrix of transition probabilities for 
the nonabsorbing states of the Markov chain, I is the hxh 

identity matrix, and 1  is an hxl vector with all elements 

being unity, then it is well known that m  is given by 
(I-Q)-11 . The transition probabilities for the Markov chain 
can be easily computed since the distribution of iSN can be 
obtained from the binomial distribution. 

 The value of the ARL for the CUSUM chart using 
iSN depends on the values of the parameters h and k. One 

approach to selecting h and k is to choose the parameter 
values that minimize 1( )L  subject to maintaining a specified 
value of 0( )L 

, where 1  is a value of  that is considered 
as a significant shift. The optimal value for k is then 

approximately 1
1 [ / ],
2 ik E SN 

 (Reynolds [5]). Using this 
value of k, the value of h should then be chosen to achieve 

the desired value of 0( )L 

. 
 Approximate optimum values of k for the CUSUM 

Chart using the Sign statistic when n=10 and 1   for the 
uniform, normal, double exponential, Cauchy, and gamma 
distributions are given by Amin, Reynolds, and Bakir [15]. 
Except for the Cauchy distribution, the values of k do not 
differ very much for the various distributions. They have 

also given the values of 0( )L 

for the CUSUM chart using 
the Sign statistic for various values of h and k when n=10. 
They observed that for the Shewhart’s charts using iSN it 
was necessary to have n of moderate size in order to have a 

reasonably large value of 0( )L 

. For the CUSUM chart 
however, the value of n can be smaller since the procedure is 
based on a cumulative sum of statistics from individual 
samples and h can be chosen large enough to give arbitrarily 

large values of 0( )L 

. The disadvantage of small samples 
for the CUSUM chart using iSN is that it is not possible for the 
procedure to signal after only one sample if n<h+k. 

 A similar CUSUM chart can be developed for 

controlling process variability after substituting iV  for  

iSN  in (2.10) and (2.11). The problem of choosing an 
appropriate value for k needs a separate investigation. 

III. PERFORMANCE COMPARISON OF THE 
CONTROL CHARTS THROUGH 

The performance of a control chart is usually evaluated 
and compared in terms of the Average Run Length (ARL), 

which is the expected number of samples required by the 
procedure to signal that a shift in the process median (mean) 
  has occurred. Since the amount of production is 
proportional to the ARL, it is often used to evaluate control 
charts in industrial quality control applications. To avoid 
over-controlling the process, the ARL should be large when 
the process is operating on target. On the other hand, to 
minimize the production of lower quality products, the ARL 
should be small when the process is operating off target 
(Lucas and Saccucci, [17]). Thus, it is desirable to have a 
large value of ARL when the process is in control and small 
value when the process is out of control. 

In this section, we compare the performance of the three 
process control procedures for group of observations, viz, the 
parametric Tabular CUSUM, CuScore chart and 
nonparametric Sign-CUSUM chart. The comparisons of the 
three procedures are carried out by computing the ARL 
values of each of the procedures by the simulation technique. 

We develop computer programs for calculation of each 
ARL value and 1000 runs are repeated. Normal observations 
are generated using Box-Muller formula [18] and then 
necessary values of shift parameters added. The control 
limits for the control charts, are obtained such that the 
frequency of the points falling outside the control limits are 
approximately equal for all the three procedures when the 
processes are in control. Then the process mean (or median) 
is shifted by the amount   and the out -of -control ARL 
values are recorded. The shifts considered in this study are 

between  =.25 to  =4.  
Another point which should be noted is that for all the 

three procedures, viz, (parametric) Tabular CUSUM, 
CuScore chart and nonparametric Sign-CUSUM chart, used 
in this simulation are based on groups of observations of size 
g. Larger groups sizes allow larger in-control ARL values 
but can only achieve a minimum out-of-control ARL value 
of (a larger) g because an entire group must be sampled 
before a signal. Bakir and Reynolds [7] concluded that the 
best group size is somewhere between 5 and 10 depending 
on the desired value of the in-control ARL and the size of the 
shift.  

Again, one important point to be noted here is that, in our 
present paper observations generated only from Normal 
distribution is considered as an example, and for 
observations following other distributions, study has been 
carried out and supposed to be reported in subsequent 
articles as this paper is a part of our ongoing research work 
The parameters of the distribution is chosen such that 
variance =1. For simplicity, the ARL is calculated under the 
assumption that the variance of the distribution is known 
and not estimated. 

Thus, in section 3.1 below, we have displayed some of the 
results obtained through Simulation method. 

A. Simulation results  

As discussed in detail in section above, using simulation 
method, we generate normal observations and calculated 
ARLs for various choices of chart parameters and shifts in 
the process mean. Thus, the values of ARL’s of the three 
charts viz, the parametric Tabular CUSUM, the 
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nonparametric Sign-CUSUM and the CuScore charts for 
various degrees of shift in the underlying process average, 
and magnitudes of the various Chart parameters are 
presented in the tables below for normal distribution.  

Before that, we will first reproduce some given values of 
ARL performance of the parametric Tabular CUSUM from 
Montgomery[19] in Table 1 and ARL performance of the 
Tabular CUSUM and  CuScore Control chart in Table 2 
from Munford [2] so that we can verify our simulated results 
with  these standard results. 

Table 1 : ARL Performance of Tabular CUSUM with k=1/2 
and h=4 or h=5 

 
Munford [2] gives ARL performance of CUSUM with h=2, 5 
and k=0.5, 1 and ARL performance of CuScore chart with 
various a values and corresponding k values, which are 
reproduced in Table 2 below. 

Table 2: ARL Performance of Tabular CUSUM with various 
h and k and CuScore with 

               a = 2,3,4,6,8 and k = 2.16, 1.82, 1.54, 2.12, 1.77, 
1.48 respectively.[ Munford (1980)]. 

 
Now, we tabulate our simulation results i.e the ARL 
performance of Tabular CUSUM, CuScore and 
Sign-CUSUM, which we have obtained through our 
computer programs using simulation technique (Detail is 
discussed in section 3 above). 

The following tables, viz, Table 3(i) and Table 3(ii) gives the 
ARL performance of the Nonparametric Sign-CUSUM chart 
for various degrees of shift in the underlying process 
average, and magnitudes of the various Chart Parameters  
and subgroup size=1 
 

Table3 (i): ARL performance of Sign-CUSUM with g=10, 
h=2, 3, 4, 5 and k=1,2,3  Respectively 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Table3 (ii): ARL performance of Sign-CUSUM with g=10, 
h=6, 7, 8, 9 and k=1, 2, 3 respectively 
 

 
 

Table 4(a) and Table 4(b) below gives ARL performance of 
CuScore and Sign-CUSUM chart for various degrees of shift 
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in the underlying process average, and magnitudes of the 
various Chart Parameters  and subgroup size=10. Also, both 
of these tables gives a comparison of ARL performance of 
the three procedures viz., the parametric tabular CUSUM 
chart, the CuScore chart and the non-parametric 
Sign-CUSUM chart  under study for approximate ARL(0) 
values of (a) 465  and (b) 130 

 
 

The ARL values of the three control charts given by table 
4(a) have been depicted graphically by Figure1 below. 

 

 

Similarly, the ARL values of the three control charts given 
by table 4(b) have been depicted graphically by Figure 2 
below. 

 
 
 

IV. CONCLUSION FROM SIMULATION RESULTS 

While comparing the ARL performance of the three control 
chart procedures viz., the parametric Tabular Cusum chart , 
the CuScore chart and the nonparametric Sign-Cusum chart, 
from the Table 4(a) and Figure 1 as well as Table 4(b) and 
Figure 2, it may be concluded as follows:  

(1) For the situation given in Table 4(a) and as 
depicted by Figure 1, the ARL performance of 
Tabular Cusum and CuScore is almost same and 
performance of Sign-Cusum is slightly higher for 
the incontrol mean. But as the shift in mean 
occurs, the ARL performance of Sign-Cusum 
seems to be best in this particular situation among 
the three procedures. 

(2) For the situation given in Table 4(b) and as 
depicted by Figure 2 , for the in-control mean, the 
ARL performance of the three procedure differ 
slightly to each other, but as the shifts in mean 
occurs, the ARL performance of Sign-Cusum 
seems to be  best among the three procedures in 
this particular situation . 

Thus in both the situations we considered to compare the 
three procedures, indicates that  among the three procedures 
in this particular situation the  Nonparametric Sign-Cusum 
chart seems to  give  best performance and CuScore chart 
gives better performance as compared to Tabular Cusum.  
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