International Journal of Innovative Research in Computer Science and Technology
Year: 2021, Volume: 9, Issue: 2
First page : ( 28) Last page : ( 34)
Online ISSN : 2350-0557.
DOI: 10.21276/ijircst.2021.9.2.5 |
DOI URL: https://doi.org/10.21276/ijircst.2021.9.2.5
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0)http://creativecommons.org/licenses/by/4.0
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
Rajeswari R
COVID-19 has impacted the lives of each and every person in the world. Diagnosis of COVID-19 using imaging systems can be integrated with the standard Reverse Transcription Polymerase Chain Reaction (RT-PCR) test to perform the diagnosis more accurately. In this paper, transfer learning based method using a pre-trained deep neural network model viz., ResNet is proposed to classify COVID-19 computed tomography (CT) lung images. The pre-trained model is fine-tuned in order to make it learn the features specific to COVID-19 CT lung images. The proposed method is compared with the methods available in the literature. The results show that the proposed method is comparable to the existing methods.
Associate Professor, Department of Computer Applications, Bharathiar University, Coimbatore, India (email: rajeswarilenin2711@gmail.com)
No. of Downloads: 39 | No. of Views: 1776
Kalyan Chakravarthy Kodela, Rohith Vangalla.
September 2025 - Vol 13, Issue 5
Juanda Hakim Lubis, Akhyar Lubis, Fajrul Malik Aminullah Napitupulu, Nahdah Salsabiil Damanik, Lathifah Tsamratul Ain.
September 2025 - Vol 13, Issue 5
Noah K. Bamfo, Christian Avornu, Abigail Nanayaa Otchill, Hassan Cessi Ibrahim, Ramini Nikhil Sai.
September 2025 - Vol 13, Issue 5