Volume- 5
Issue- 2
Year- 2017
DOI: 10.21276/ijircst.2017.5.2.1 | DOI URL: https://doi.org/10.21276/ijircst.2017.5.2.1
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
M.A. Sohaly , M.T. Yassen, I.M. Elbaz
This paper studies the solutions of variational methods for random ordinary (partial) dierential equations in L2−space. These methods are called Galerkin method, Petrov-Galerkin method, Least-Squares method and Collocation method. Some basic properties of these methods where applying on random problems will be shown throughout some numerical example
[1] M. A. SOHALY, Mean square convergent three and five points finite difference scheme for stochastic parabolic partial differential equations, Electronic Journal of Mathematical Analysis and Applications 2 (14) (2014) 164–171.
[2] W. Ames, Numerical Methods for Partial Differential Equations, Computer Science and Scientific Computing, Elsevier Science, 2014.
[3] M. A. El-Tawil, M. A. Sohaly, Mean square numerical methods for initial value random differential equations,Open Journal of Discrete Mathematics 1 (2) (2011) 66–84.
[4] J. Cortes, L. Jodar, L. Villafuerte, R. Villanueva, Computing mean square approximations of random diffusionmodels with source term, Mathematics and Computers in Simulation 76 (2007) 44–48.
[5] M. Yassen, M. Sohaly, I. Elbaz, Random crank-nicolson scheme for random heat equation in mean square sense,American Journal of Computational Mathematics 6 (2016) 66–73.
[6] A. Mitchell, D. Griffith, The finite difference method in partial differential equations.
[7] J.N. Reddy, An Introduction to the Finite Element Method, Third Edition, McGraw-Hill, New York, 2006.
[8] B. Szabo, I. Babuˇska, Finite Element Analysis, A Wiley-Interscience publication, 1991.
[9] J. T. Oden, J. N. Reddy, Variational methods in theoretical mechanics, Springer Science & Business Media, 2012.
[10] J.N. Reddy, D. K. Gartling, the finite element method in heat transfer and fluid dynamics, CRC press, 2010.
[11] O. Zienkiewicz, R. Taylor, The Finite Element Method: Solid mechanics, Butterworth-Heinemann, 2000.
[12] R. Wait, A. Mitchell, The Finite Element Method in Partial Differential Equations, John Willey and Sons, 1978.
[13] C. A. J. Fletcher, Computational Galerkin Methods, Springer Berlin Heidelberg, 1984.
[14] N. Young, An Introduction to Hilbert Space, Cambridge mathematical textbooks, Cambridge University Press,1988.
[15] T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.
[16] K. Kuratowski, Topology, Elsevier Science, 2014.
[17] L. Debnath, F. A. Shah, Hilbert Spaces and Orthonormal Systems, Birkh¨auser Boston, Boston, MA, 2015, pp.29–127.
Department of Mathematics, Faculty of Science, Mansoura, Egypt, (e-mail: m_stat2000@yahoo.com
No. of Downloads: 17 | No. of Views: 1154
Michael M. Silaev.
September 2017 - Vol 5, Issue 5
M.MuthuKumaran, S.Vigneshwar.
November 2016 - Vol 4, Issue 6
A.M. Hamed.
March 2016 - Vol 4, Issue 2